Martin Escardo 2011.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import UF.FunExt
module Naturals.Sequence (fe : FunExt) where
open import MLTT.Spartan hiding (_+_)
open import UF.Retracts
open import Naturals.Addition
_∶∶_ : {X : ℕ → 𝓤 ̇ } → X 0 → ((n : ℕ) → X (succ n)) → ((n : ℕ) → X n)
(x ∶∶ α) 0 = x
(x ∶∶ α) (succ n) = α n
head : {X : ℕ → 𝓤 ̇ } → ((n : ℕ) → X n) → X 0
head α = α 0
tail : {X : ℕ → 𝓤 ̇ } → ((n : ℕ) → X n) → ((n : ℕ) → X (succ n))
tail α n = α (succ n)
head-tail-eta : {X : ℕ → 𝓤 ̇ } {α : (n : ℕ) → X n} → (head α ∶∶ tail α) = α
head-tail-eta {𝓤} {X} = dfunext (fe 𝓤₀ 𝓤) lemma
where
lemma : {α : (n : ℕ) → X n} → (i : ℕ) → (head α ∶∶ tail α) i = α i
lemma 0 = refl
lemma (succ i) = refl
private cons : {X : ℕ → 𝓤 ̇ } → X 0 × ((n : ℕ) → X (succ n)) → ((n : ℕ) → X n)
cons (x , α) = x ∶∶ α
cons-has-section' : {X : ℕ → 𝓤 ̇ } → has-section' (cons {𝓤} {X})
cons-has-section' α = (head α , tail α) , head-tail-eta
\end{code}
(In fact it is an equivalence, but I won't bother, until this is
needed.)
\begin{code}
itail : {X : ℕ → 𝓤 ̇ } → (n : ℕ) → ((i : ℕ) → X i) → ((i : ℕ) → X (i + n))
itail n α i = α (i + n)
\end{code}
Added 16th July 2018. Corecursion on sequences ℕ → A.
p = (h,t)
X ------------------> A × X
| |
| |
f | | A × f
| |
| |
v v
(ℕ → A) ---------------> A × (ℕ → A)
P = (head, tail)
head (f x) = h x
tail (f x) = f (t x)
Or equivalentaily
f x = cons (h x) (f (t x))
\begin{code}
module _ {𝓤 𝓥 : Universe}
{A : 𝓤 ̇ }
{X : 𝓥 ̇ }
(h : X → A)
(t : X → X)
where
private
f : X → (ℕ → A)
f x zero = h x
f x (succ n) = f (t x) n
seq-corec = f
seq-corec-head : head ∘ f ∼ h
seq-corec-head x = refl
seq-corec-tail : tail ∘ f ∼ f ∘ t
seq-corec-tail x = dfunext (fe 𝓤₀ 𝓤) (λ n → refl)
seq-final : Σ! f ꞉ (X → (ℕ → A)), (head ∘ f ∼ h) × (tail ∘ f ∼ f ∘ t)
seq-final = (seq-corec , seq-corec-head , seq-corec-tail) , c
where
c : (f f' : X → ℕ → A) →
(head ∘ f ∼ h) × (tail ∘ f ∼ f ∘ t) →
(head ∘ f' ∼ h) × (tail ∘ f' ∼ f' ∘ t) → f = f'
c f f' (a , b) (c , d) = dfunext (fe 𝓥 𝓤) (λ x → dfunext (fe 𝓤₀ 𝓤) (r x))
where
r : (x : X) (n : ℕ) → f x n = f' x n
r x zero = a x ∙ (c x)⁻¹
r x (succ n) = f x (succ n) =⟨ ap (λ - → - n) (b x) ⟩
f (t x) n =⟨ r (t x) n ⟩
f' (t x) n =⟨ ( ap (λ - → - n) (d x)) ⁻¹ ⟩
f' x (succ n) ∎
\end{code}
Added 11th September 2018.
\begin{code}
seq-bisimulation : {A : 𝓤 ̇ } → ((ℕ → A) → (ℕ → A) → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇
seq-bisimulation {𝓤} {𝓥} {A} R = (α β : ℕ → A) → R α β
→ (head α = head β)
× R (tail α) (tail β)
seq-coinduction : {A : 𝓤 ̇ } (R : (ℕ → A) → (ℕ → A) → 𝓥 ̇ )
→ seq-bisimulation R → (α β : ℕ → A) → R α β → α = β
seq-coinduction {𝓤} {𝓥} {A} R b α β r = dfunext (fe 𝓤₀ 𝓤) (h α β r)
where
h : (α β : ℕ → A) → R α β → α ∼ β
h α β r zero = pr₁ (b α β r)
h α β r (succ n) = h (tail α) (tail β) (pr₂ (b α β r)) n
\end{code}