Martin Escardo 2012.
The Weak Limited Principle of Omniscience (only somebody called Bishop
could have called it that), or WLPO for short, says that every
infinity binary sequence is either constantly 1 or it isn't.
This is equivalent to saying that every decreasing infinity binary
sequence os either constantly one or not.
The type ββ of decreasing binary sequences is defined in the module
GenericConvergentSequence. The constantly 1 sequence is called β.
WLPO is independent of type theory: it holds in the model of classical
sets, and it fails in recursive models, because it amounts to a
solution of the Halting Problem. But we want to keep it undecided, for
the sake of being compatible with classical mathematics, following the
wishes of Bishop, and perhaps upsetting those of Brouwer who was happy
to accept continuity principles that falsify WLPO. In the words of
Aczel, WLPO is a taboo. More generally, anything that implies a taboo
is a taboo, and any taboo is undecided. Taboos are boundary
propositions: they are classically true, recursively false, and
constructively, well, taboos!
\begin{code}
{-# OPTIONS --safe --without-K #-}
module Taboos.WLPO where
open import MLTT.Spartan
open import CoNaturals.Type
open import UF.DiscreteAndSeparated
open import UF.FunExt
open import NotionsOfDecidability.Decidable
WLPO : π€β Μ
WLPO = (u : ββ) β (u οΌ β) + (u β β)
\end{code}
If ββ is discrete, i.e. has decidable equality, then WLPO follows:
\begin{code}
ββ-discrete-gives-WLPO : is-discrete ββ β WLPO
ββ-discrete-gives-WLPO d u = d u β
\end{code}
Added 12 September 2018.
Conversely, assuming function extensionality, WLPO implies that ββ is
discrete. The proof uses a codistance (or closeness) function
c : ββ β ββ β ββ such that c u v οΌ β β u οΌ v.
\begin{code}
WLPO-gives-ββ-discrete : FunExt β WLPO β is-discrete ββ
WLPO-gives-ββ-discrete fe wlpo u v =
Cases (wlpo (ββ-closeness u v))
(Ξ» (p : ββ-closeness u v οΌ β)
β inl (ββ-infinitely-close-are-equal u v p))
(Ξ» (n : ββ-closeness u v β β)
β inr (contrapositive (Ξ» (q : u οΌ v)
β ββ-equal-are-infinitely-close u v q) n))
where
open import TWA.Closeness fe
\end{code}
More discussion about WLPO is included in the modules
TheTopologyOfTheUniverse and FailureOfTotalSeparatedness, among
others.
Notice that weak excluded middle implies WLPO.
\begin{code}
open import UF.ClassicalLogic
WEM-gives-WLPO : funextβ β typal-WEM π€β β WLPO
WEM-gives-WLPO fe wem u = Cases (wem (u οΌ β))
(Ξ» (p : (u β β))
β inr p)
(Ξ» (Ξ½ : Β¬ (u β β))
β inl (ββ-is-¬¬-separated fe u β Ξ½))
\end{code}
Added 15th November 2023.
\begin{code}
open import UF.Base
WLPO-traditional : π€β Μ
WLPO-traditional = (Ξ± : β β π) β is-decidable ((n : β) β Ξ± n οΌ β)
open import MLTT.Two-Properties
WLPO-gives-WLPO-traditional : funext π€β π€β β WLPO β WLPO-traditional
WLPO-gives-WLPO-traditional fe wlpo Ξ± = IV
where
I : (ββπ-to-ββ Ξ± οΌ β) + (ββπ-to-ββ Ξ± β β)
I = wlpo (ββπ-to-ββ Ξ±)
II : ββπ-to-ββ Ξ± οΌ β β (n : β) β Ξ± n οΌ β
II p n = IIβ
where
IIβ : ββ-to-ββπ (ββπ-to-ββ Ξ±) οΌ ββ-to-ββπ β
IIβ = ap ββ-to-ββπ p
IIβ : force-decreasing Ξ± n οΌ β
IIβ = ap (Ξ» - β - n) IIβ
IIβ : Ξ± n οΌ β
IIβ = β€β-criterion-converse (force-decreasing-is-smaller Ξ± n) IIβ
III : ((n : β) β Ξ± n οΌ β) β ββπ-to-ββ Ξ± οΌ β
III Ο = ββ-to-ββπ-lc fe (dfunext fe IIIβ)
where
IIIβ : (n : β) β force-decreasing Ξ± n οΌ Ξ± n
IIIβ = force-decreasing-unchanged Ξ±
(Ξ» i β transportβ _β€β_
((Ο (succ i))β»ΒΉ)
((Ο i)β»ΒΉ)
(β€β-refl {β}))
IIIβ : ββ-to-ββπ (ββπ-to-ββ Ξ±) βΌ ββ-to-ββπ β
IIIβ n = ββ-to-ββπ (ββπ-to-ββ Ξ±) n οΌβ¨ refl β©
force-decreasing Ξ± n οΌβ¨ IIIβ n β©
Ξ± n οΌβ¨ Ο n β©
β οΌβ¨ refl β©
ββ-to-ββπ β n β
IV : is-decidable ((n : β) β Ξ± n οΌ β)
IV = map-decidable II III I
WLPO-traditional-gives-WLPO : funextβ β WLPO-traditional β WLPO
WLPO-traditional-gives-WLPO fe wlpot u = IV
where
I : is-decidable ((n : β) β ββ-to-ββπ u n οΌ β)
I = wlpot (ββ-to-ββπ u)
II : ((n : β) β ββ-to-ββπ u n οΌ β) β u οΌ β
II Ο = ββ-to-ββπ-lc fe (dfunext fe Ο)
III : u οΌ β β (n : β) β ββ-to-ββπ u n οΌ β
III e n = ap (Ξ» - β ββ-to-ββπ - n) e
IV : (u οΌ β) + (u β β)
IV = map-decidable II III I
\end{code}
Added 9th September 2024. WLPO amounts to saying that the constancy of
a binary sequence is decidable.
\begin{code}
WLPO-variation : π€β Μ
WLPO-variation = (Ξ± : β β π) β is-decidable ((n : β) β Ξ± n οΌ Ξ± 0)
WLPO-variation-gives-WLPO-traditional
: WLPO-variation
β WLPO-traditional
WLPO-variation-gives-WLPO-traditional wlpov Ξ±
= π-equality-cases I II
where
I : Ξ± 0 οΌ β β ((n : β) β Ξ± n οΌ β) + Β¬ ((n : β) β Ξ± n οΌ β)
I p = inr (Ξ» (Ο : (n : β) β Ξ± n οΌ β)
β zero-is-not-one
(β οΌβ¨ p β»ΒΉ β©
Ξ± 0 οΌβ¨ Ο 0 β©
β β))
II : Ξ± 0 οΌ β β ((n : β) β Ξ± n οΌ β) + Β¬ ((n : β) β Ξ± n οΌ β)
II p = map-decidable
(Ξ» (Ο : (n : β) β Ξ± n οΌ Ξ± 0) (n : β)
β Ξ± n οΌβ¨ Ο n β©
Ξ± 0 οΌβ¨ p β©
β β)
(Ξ» (Ξ³ : (n : β) β Ξ± n οΌ β) (n : β)
β Ξ± n οΌβ¨ Ξ³ n β©
β οΌβ¨ p β»ΒΉ β©
Ξ± 0 β)
(wlpov Ξ±)
\end{code}
TODO. The converse.