Martin Escardo, 18 January 2021.
Small additions by Tom de Jong in May and June 2024.
\begin{code}
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import UF.Univalence
module Ordinals.AdditionProperties
(ua : Univalence)
where
open import UF.Base
open import UF.ClassicalLogic
open import UF.Embeddings hiding (β_β)
open import UF.Equiv
open import UF.EquivalenceExamples
open import UF.FunExt
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
open import UF.UA-FunExt
private
fe : FunExt
fe = Univalence-gives-FunExt ua
fe' : Fun-Ext
fe' {π€} {π₯} = fe π€ π₯
pe : PropExt
pe = Univalence-gives-PropExt ua
open import MLTT.Plus-Properties
open import MLTT.Spartan
open import Notation.CanonicalMap
open import Ordinals.Arithmetic fe
open import Ordinals.Equivalence
open import Ordinals.Maps
open import Ordinals.Notions
open import Ordinals.OrdinalOfOrdinals ua
open import Ordinals.Type
open import Ordinals.Underlying
πβ-left-neutral : (Ξ± : Ordinal π€) β πβ +β Ξ± οΌ Ξ±
πβ-left-neutral {π€} Ξ± = eqtoidβ (ua π€) fe' (πβ +β Ξ±) Ξ± h
where
f : π + β¨ Ξ± β© β β¨ Ξ± β©
f = β π-lneutral β
f-preserves-order : (x y : π + β¨ Ξ± β©) β x βΊβ¨ πβ +β Ξ± β© y β f x βΊβ¨ Ξ± β© f y
f-preserves-order (inr x) (inr y) l = l
f-reflects-order : (x y : π + β¨ Ξ± β©) β f x βΊβ¨ Ξ± β© f y β x βΊβ¨ πβ +β Ξ± β© y
f-reflects-order (inr x) (inr y) l = l
h : (πβ +β Ξ±) ββ Ξ±
h = f , order-preserving-reflecting-equivs-are-order-equivs (πβ +β Ξ±) Ξ± f
(ββ-is-equiv π-lneutral) f-preserves-order f-reflects-order
πβ-right-neutral : (Ξ± : Ordinal π€) β Ξ± +β πβ οΌ Ξ±
πβ-right-neutral Ξ± = eqtoidβ (ua _) fe' (Ξ± +β πβ) Ξ± h
where
f : β¨ Ξ± β© + π β β¨ Ξ± β©
f = β π-rneutral' β
f-preserves-order : is-order-preserving (Ξ± +β πβ) Ξ± f
f-preserves-order (inl x) (inl y) l = l
f-reflects-order : is-order-reflecting (Ξ± +β πβ) Ξ± f
f-reflects-order (inl x) (inl y) l = l
h : (Ξ± +β πβ) ββ Ξ±
h = f , order-preserving-reflecting-equivs-are-order-equivs (Ξ± +β πβ) Ξ± f
(ββ-is-equiv π-rneutral') f-preserves-order f-reflects-order
+β-assoc : (Ξ± Ξ² Ξ³ : Ordinal π€) β (Ξ± +β Ξ²) +β Ξ³ οΌ Ξ± +β (Ξ² +β Ξ³)
+β-assoc Ξ± Ξ² Ξ³ = eqtoidβ (ua _) fe' ((Ξ± +β Ξ²) +β Ξ³) (Ξ± +β (Ξ² +β Ξ³)) h
where
f : β¨ (Ξ± +β Ξ²) +β Ξ³ β© β β¨ Ξ± +β (Ξ² +β Ξ³) β©
f = β +assoc β
f-preserves-order : is-order-preserving ((Ξ± +β Ξ²) +β Ξ³) (Ξ± +β (Ξ² +β Ξ³)) f
f-preserves-order (inl (inl x)) (inl (inl y)) l = l
f-preserves-order (inl (inl x)) (inl (inr y)) l = l
f-preserves-order (inl (inr x)) (inl (inr y)) l = l
f-preserves-order (inl (inl x)) (inr y) l = l
f-preserves-order (inl (inr x)) (inr y) l = l
f-preserves-order (inr x) (inr y) l = l
f-reflects-order : is-order-reflecting ((Ξ± +β Ξ²) +β Ξ³) (Ξ± +β (Ξ² +β Ξ³)) f
f-reflects-order (inl (inl x)) (inl (inl y)) l = l
f-reflects-order (inl (inl x)) (inl (inr y)) l = l
f-reflects-order (inl (inr x)) (inl (inr y)) l = l
f-reflects-order (inl (inl x)) (inr y) l = l
f-reflects-order (inl (inr x)) (inr y) l = l
f-reflects-order (inr x) (inl (inl y)) l = l
f-reflects-order (inr x) (inl (inr y)) l = l
f-reflects-order (inr x) (inr y) l = l
h : ((Ξ± +β Ξ²) +β Ξ³) ββ (Ξ± +β (Ξ² +β Ξ³))
h = f , order-preserving-reflecting-equivs-are-order-equivs
((Ξ± +β Ξ²) +β Ξ³) (Ξ± +β (Ξ² +β Ξ³))
f (ββ-is-equiv +assoc) f-preserves-order f-reflects-order
+β-β-left : {Ξ± Ξ² : Ordinal π€} (a : β¨ Ξ± β©)
β (Ξ± β a) οΌ ((Ξ± +β Ξ²) β inl a)
+β-β-left {π€} {Ξ±} {Ξ²} a = h
where
Ξ³ = Ξ± β a
Ξ΄ = (Ξ± +β Ξ²) β inl a
f : β¨ Ξ³ β© β β¨ Ξ΄ β©
f (x , l) = inl x , l
g : β¨ Ξ΄ β© β β¨ Ξ³ β©
g (inl x , l) = x , l
Ξ· : g β f βΌ id
Ξ· u = refl
Ξ΅ : f β g βΌ id
Ξ΅ (inl x , l) = refl
f-is-equiv : is-equiv f
f-is-equiv = qinvs-are-equivs f (g , Ξ· , Ξ΅)
f-is-order-preserving : is-order-preserving Ξ³ Ξ΄ f
f-is-order-preserving (x , _) (x' , _) l = l
g-is-order-preserving : is-order-preserving Ξ΄ Ξ³ g
g-is-order-preserving (inl x , _) (inl x' , _) l = l
h : Ξ³ οΌ Ξ΄
h = eqtoidβ (ua π€) fe' Ξ³ Ξ΄
(f , f-is-order-preserving , f-is-equiv , g-is-order-preserving)
+β-left-β΄ : (Ξ± Ξ² : Ordinal π€)
β Ξ± β΄ Ξ± +β Ξ²
+β-left-β΄ Ξ± Ξ² = to-β΄ Ξ± (Ξ± +β Ξ²) (Ξ» a β inl a , +β-β-left a)
+β-β-right : {Ξ± Ξ² : Ordinal π€} (b : β¨ Ξ² β©)
β (Ξ± +β (Ξ² β b)) οΌ ((Ξ± +β Ξ²) β inr b)
+β-β-right {π€} {Ξ±} {Ξ²} b = h
where
Ξ³ = Ξ± +β (Ξ² β b)
Ξ΄ = (Ξ± +β Ξ²) β inr b
f : β¨ Ξ³ β© β β¨ Ξ΄ β©
f (inl a) = inl a , β
f (inr (y , l)) = inr y , l
g : β¨ Ξ΄ β© β β¨ Ξ³ β©
g (inl a , β) = inl a
g (inr y , l) = inr (y , l)
Ξ· : g β f βΌ id
Ξ· (inl a) = refl
Ξ· (inr (y , l)) = refl
Ξ΅ : f β g βΌ id
Ξ΅ (inl a , β) = refl
Ξ΅ (inr y , l) = refl
f-is-equiv : is-equiv f
f-is-equiv = qinvs-are-equivs f (g , Ξ· , Ξ΅)
f-is-order-preserving : is-order-preserving Ξ³ Ξ΄ f
f-is-order-preserving (inl _) (inl _) l = l
f-is-order-preserving (inl _) (inr _) l = l
f-is-order-preserving (inr _) (inr _) l = l
g-is-order-preserving : is-order-preserving Ξ΄ Ξ³ g
g-is-order-preserving (inl _ , _) (inl _ , _) l = l
g-is-order-preserving (inl _ , _) (inr _ , _) l = l
g-is-order-preserving (inr _ , _) (inr _ , _) l = l
h : Ξ³ οΌ Ξ΄
h = eqtoidβ (ua π€) fe' Ξ³ Ξ΄
(f , f-is-order-preserving , f-is-equiv , g-is-order-preserving)
+β-β²-left : {Ξ± Ξ² : Ordinal π€} (a : β¨ Ξ± β©)
β (Ξ± β a) β² (Ξ± +β Ξ²)
+β-β²-left {π€} {Ξ±} {Ξ²} a = inl a , +β-β-left a
+β-β²-right : {Ξ± Ξ² : Ordinal π€} (b : β¨ Ξ² β©)
β (Ξ± +β (Ξ² β b)) β² (Ξ± +β Ξ²)
+β-β²-right {π€} {Ξ±} {Ξ²} b = inr b , +β-β-right {π€} {Ξ±} {Ξ²} b
+β-increasing-on-right : {Ξ± Ξ² Ξ³ : Ordinal π€}
β Ξ² β² Ξ³
β (Ξ± +β Ξ²) β² (Ξ± +β Ξ³)
+β-increasing-on-right {π€} {Ξ±} {Ξ²} {Ξ³} (c , p) = inr c , q
where
q = (Ξ± +β Ξ²) οΌβ¨ ap (Ξ± +β_) p β©
(Ξ± +β (Ξ³ β c)) οΌβ¨ +β-β-right c β©
((Ξ± +β Ξ³) β inr c) β
+β-right-monotone : (Ξ± Ξ² Ξ³ : Ordinal π€)
β Ξ² βΌ Ξ³
β (Ξ± +β Ξ²) βΌ (Ξ± +β Ξ³)
+β-right-monotone Ξ± Ξ² Ξ³ m = to-βΌ Ο
where
l : (a : β¨ Ξ± β©) β ((Ξ± +β Ξ²) β inl a) β² (Ξ± +β Ξ³)
l a = o
where
n : (Ξ± β a) β² (Ξ± +β Ξ³)
n = +β-β²-left a
o : ((Ξ± +β Ξ²) β inl a) β² (Ξ± +β Ξ³)
o = transport (_β² (Ξ± +β Ξ³)) (+β-β-left a) n
r : (b : β¨ Ξ² β©) β ((Ξ± +β Ξ²) β inr b) β² (Ξ± +β Ξ³)
r b = s
where
o : (Ξ² β b) β² Ξ³
o = from-βΌ m b
p : (Ξ± +β (Ξ² β b)) β² (Ξ± +β Ξ³)
p = +β-increasing-on-right o
q : Ξ± +β (Ξ² β b) οΌ (Ξ± +β Ξ²) β inr b
q = +β-β-right b
s : ((Ξ± +β Ξ²) β inr b) β² (Ξ± +β Ξ³)
s = transport (_β² (Ξ± +β Ξ³)) q p
Ο : (x : β¨ Ξ± +β Ξ² β©) β ((Ξ± +β Ξ²) β x) β² (Ξ± +β Ξ³)
Ο = dep-cases l r
\end{code}
TODO. Find better names for the following lemmas.
\begin{code}
AP-lemmaβ : {Ξ± Ξ² : Ordinal π€}
β Ξ± βΌ (Ξ± +β Ξ²)
AP-lemmaβ {π€} {Ξ±} {Ξ²} = to-βΌ Ο
where
Ο : (a : β¨ Ξ± β©) β Ξ£ z κ β¨ Ξ± +β Ξ² β© , (Ξ± β a) οΌ ((Ξ± +β Ξ²) β z)
Ο a = inl a , (+β-β-left a)
AP-lemmaβ : {Ξ± Ξ² : Ordinal π€}
(a : β¨ Ξ± β©)
β (Ξ± +β Ξ²) β (Ξ± β a)
AP-lemmaβ {π€} {Ξ±} {Ξ²} a p = irrefl (OO π€) (Ξ± +β Ξ²) m
where
l : (Ξ± +β Ξ²) β² Ξ±
l = (a , p)
m : (Ξ± +β Ξ²) β² (Ξ± +β Ξ²)
m = AP-lemmaβ (Ξ± +β Ξ²) l
AP-lemmaβ : {Ξ± Ξ² : Ordinal π€} (a : β¨ Ξ± β©)
β Ξ± οΌ Ξ²
β Ξ£ b κ β¨ Ξ² β© , (Ξ± β a) οΌ (Ξ² β b)
AP-lemmaβ a refl = a , refl
AP-lemmaβ : {Ξ± Ξ² Ξ³ : Ordinal π€} (b : β¨ Ξ² β©) (z : β¨ Ξ± +β Ξ³ β©)
β ((Ξ± +β Ξ²) β inr b) οΌ ((Ξ± +β Ξ³) β z)
β Ξ£ c κ β¨ Ξ³ β© , z οΌ inr c
AP-lemmaβ {π€} {Ξ±} {Ξ²} {Ξ³} b (inl a) p = π-elim (AP-lemmaβ a q)
where
q : (Ξ± +β (Ξ² β b)) οΌ (Ξ± β a)
q = +β-β-right b β p β (+β-β-left a)β»ΒΉ
AP-lemmaβ b (inr c) p = c , refl
+β-left-cancellable : (Ξ± Ξ² Ξ³ : Ordinal π€)
β (Ξ± +β Ξ²) οΌ (Ξ± +β Ξ³)
β Ξ² οΌ Ξ³
+β-left-cancellable {π€} Ξ± = g
where
P : Ordinal π€ β π€ βΊ Μ
P Ξ² = β Ξ³ β (Ξ± +β Ξ²) οΌ (Ξ± +β Ξ³) β Ξ² οΌ Ξ³
Ο : β Ξ²
β (β b β P (Ξ² β b))
β P Ξ²
Ο Ξ² f Ξ³ p = Extensionality (OO π€) Ξ² Ξ³ (to-βΌ u) (to-βΌ v)
where
u : (b : β¨ Ξ² β©) β (Ξ² β b) β² Ξ³
u b = c , t
where
z : β¨ Ξ± +β Ξ³ β©
z = prβ (AP-lemmaβ (inr b) p)
r : ((Ξ± +β Ξ²) β inr b) οΌ ((Ξ± +β Ξ³) β z)
r = prβ (AP-lemmaβ (inr b) p)
c : β¨ Ξ³ β©
c = prβ (AP-lemmaβ b z r)
s : z οΌ inr c
s = prβ (AP-lemmaβ b z r)
q = (Ξ± +β (Ξ² β b)) οΌβ¨ +β-β-right b β©
((Ξ± +β Ξ²) β inr b) οΌβ¨ r β©
((Ξ± +β Ξ³) β z) οΌβ¨ ap ((Ξ± +β Ξ³) β_) s β©
((Ξ± +β Ξ³) β inr c) οΌβ¨ (+β-β-right c)β»ΒΉ β©
(Ξ± +β (Ξ³ β c)) β
t : (Ξ² β b) οΌ (Ξ³ β c)
t = f b (Ξ³ β c) q
v : (c : β¨ Ξ³ β©) β (Ξ³ β c) β² Ξ²
v c = b , (t β»ΒΉ)
where
z : β¨ Ξ± +β Ξ² β©
z = prβ (AP-lemmaβ (inr c) (p β»ΒΉ))
r : ((Ξ± +β Ξ³) β inr c) οΌ ((Ξ± +β Ξ²) β z)
r = prβ (AP-lemmaβ (inr c) (p β»ΒΉ))
b : β¨ Ξ² β©
b = prβ (AP-lemmaβ c z r)
s : z οΌ inr b
s = prβ (AP-lemmaβ c z r)
q = (Ξ± +β (Ξ³ β c)) οΌβ¨ +β-β-right c β©
((Ξ± +β Ξ³) β inr c) οΌβ¨ r β©
((Ξ± +β Ξ²) β z) οΌβ¨ ap ((Ξ± +β Ξ²) β_) s β©
((Ξ± +β Ξ²) β inr b) οΌβ¨ (+β-β-right b)β»ΒΉ β©
(Ξ± +β (Ξ² β b)) β
t : (Ξ² β b) οΌ (Ξ³ β c)
t = f b (Ξ³ β c) (q β»ΒΉ)
g : (Ξ² : Ordinal π€) β P Ξ²
g = transfinite-induction-on-OO P Ο
left-+β-is-embedding : (Ξ± : Ordinal π€) β is-embedding (Ξ± +β_)
left-+β-is-embedding Ξ± = lc-maps-into-sets-are-embeddings (Ξ± +β_)
(Ξ» {Ξ²} {Ξ³} β +β-left-cancellable Ξ± Ξ² Ξ³)
(the-type-of-ordinals-is-a-set (ua _) fe')
\end{code}
This implies that the function Ξ± +β_ reflects the _β²_ ordering:
\begin{code}
+β-left-reflects-β² : (Ξ± Ξ² Ξ³ : Ordinal π€)
β (Ξ± +β Ξ²) β² (Ξ± +β Ξ³)
β Ξ² β² Ξ³
+β-left-reflects-β² Ξ± Ξ² Ξ³ (inl a , p) = π-elim (AP-lemmaβ a q)
where
q : (Ξ± +β Ξ²) οΌ (Ξ± β a)
q = p β (+β-β-left a)β»ΒΉ
+β-left-reflects-β² Ξ± Ξ² Ξ³ (inr c , p) = l
where
q : (Ξ± +β Ξ²) οΌ (Ξ± +β (Ξ³ β c))
q = p β (+β-β-right c)β»ΒΉ
r : Ξ² οΌ (Ξ³ β c)
r = +β-left-cancellable Ξ± Ξ² (Ξ³ β c) q
l : Ξ² β² Ξ³
l = c , r
\end{code}
And in turn this implies that the function Ξ± +β_ reflects the _βΌ_
partial ordering:
\begin{code}
+β-left-reflects-βΌ : (Ξ± Ξ² Ξ³ : Ordinal π€)
β (Ξ± +β Ξ²) βΌ (Ξ± +β Ξ³)
β Ξ² βΌ Ξ³
+β-left-reflects-βΌ {π€} Ξ± Ξ² Ξ³ l = to-βΌ (Ο Ξ² l)
where
Ο : (Ξ² : Ordinal π€)
β (Ξ± +β Ξ²) βΌ (Ξ± +β Ξ³)
β (b : β¨ Ξ² β©) β (Ξ² β b) β² Ξ³
Ο Ξ² l b = o
where
m : (Ξ± +β (Ξ² β b)) β² (Ξ± +β Ξ²)
m = +β-β²-right b
n : (Ξ± +β (Ξ² β b)) β² (Ξ± +β Ξ³)
n = l (Ξ± +β (Ξ² β b)) m
o : (Ξ² β b) β² Ξ³
o = +β-left-reflects-β² Ξ± (Ξ² β b) Ξ³ n
\end{code}
Added 4th April 2022.
\begin{code}
πβ-least-β΄ : (Ξ± : Ordinal π€) β πβ {π€} β΄ Ξ±
πβ-least-β΄ Ξ± = unique-from-π , (Ξ» x y l β π-elim x) , (Ξ» x y l β π-elim x)
πβ-least : (Ξ± : Ordinal π€) β πβ {π€} βΌ Ξ±
πβ-least Ξ± = β΄-gives-βΌ πβ Ξ± (πβ-least-β΄ Ξ±)
\end{code}
Originally added 21st April 2022 by MartΓn EscardΓ³.
Moved up here on 27th May 2024 by Tom de Jong.
\begin{code}
successor-lemma-left : (Ξ± : Ordinal π€) (x : β¨ Ξ± β©) β ((Ξ± +β πβ) β inl x) β΄ Ξ±
successor-lemma-left Ξ± x = III
where
I : (Ξ± β x) β΄ Ξ±
I = segment-β΄ Ξ± x
II : (Ξ± β x) οΌ ((Ξ± +β πβ) β inl x)
II = +β-β-left x
III : ((Ξ± +β πβ) β inl x) β΄ Ξ±
III = transport (_β΄ Ξ±) II I
successor-lemma-right : (Ξ± : Ordinal π€) β (Ξ± +β πβ) β inr β οΌ Ξ±
successor-lemma-right Ξ± = III
where
I : (πβ β β) β΄ πβ
I = (Ξ» x β π-elim (prβ x)) , (Ξ» x β π-elim (prβ x)) , (Ξ» x β π-elim (prβ x))
II : (πβ β β) οΌ πβ
II = β΄-antisym _ _ I (πβ-least-β΄ (πβ β β))
III : (Ξ± +β πβ) β inr β οΌ Ξ±
III = (Ξ± +β πβ) β inr β οΌβ¨ (+β-β-right β)β»ΒΉ β©
Ξ± +β (πβ β β) οΌβ¨ ap (Ξ± +β_) II β©
Ξ± +β πβ οΌβ¨ πβ-right-neutral Ξ± β©
Ξ± β
successor-increasing : (Ξ± : Ordinal π€) β Ξ± β² (Ξ± +β πβ)
successor-increasing Ξ± = inr β , ((successor-lemma-right Ξ±)β»ΒΉ)
\end{code}
Added on 24th May 2024 by Tom de Jong.
\begin{code}
upper-bound-of-successors-of-initial-segments :
(Ξ± : Ordinal π€) (a : β¨ Ξ± β©) β ((Ξ± β a) +β πβ) β΄ Ξ±
upper-bound-of-successors-of-initial-segments Ξ± a = to-β΄ ((Ξ± β a) +β πβ) Ξ± I
where
I : (x : β¨ (Ξ± β a) +β πβ β©) β (((Ξ± β a) +β πβ) β x) β² Ξ±
I (inl (b , l)) = b , (((Ξ± β a) +β πβ) β inl (b , l) οΌβ¨ eβ β©
(Ξ± β a) β (b , l) οΌβ¨ eβ β©
Ξ± β b β)
where
eβ = (+β-β-left (b , l)) β»ΒΉ
eβ = iterated-β Ξ± a b l
I (inr β) = a , successor-lemma-right (Ξ± β a)
\end{code}
End of addition.
Classically, if Ξ± βΌ Ξ² then there is (a necessarily unique) Ξ³ with
Ξ± +β Ξ³ οΌ Ξ². But this not necessarily the case constructively. For
that purpose, we first characterize the order of subsingleton
ordinals.
\begin{code}
module _ {π€ : Universe}
(P Q : π€ Μ )
(P-is-prop : is-prop P)
(Q-is-prop : is-prop Q)
where
private
p q : Ordinal π€
p = prop-ordinal P P-is-prop
q = prop-ordinal Q Q-is-prop
factβ : p β² q β Β¬ P Γ Q
factβ (y , r) = u , y
where
s : P οΌ (Q Γ π)
s = ap β¨_β© r
u : Β¬ P
u p = π-elim (prβ (β idtoeq P (Q Γ π) s β p))
factβ-converse : Β¬ P Γ Q β p β² q
factβ-converse (u , y) = (y , g)
where
r : P οΌ Q Γ π
r = univalence-gives-propext (ua π€)
P-is-prop
Γ-π-is-prop
(Ξ» p β π-elim (u p))
(Ξ» (q , z) β π-elim z)
g : p οΌ (q β y)
g = to-Ξ£-οΌ (r ,
to-Ξ£-οΌ (dfunext fe' (Ξ» (y , z) β π-elim z) ,
being-well-order-is-prop (underlying-order (q β y)) fe _ _))
factβ : p βΌ q β (P β Q)
factβ l x = prβ (from-βΌ {π€} {p} {q} l x)
factβ-converse : (P β Q) β p βΌ q
factβ-converse f = to-βΌ {π€} {p} {q} Ο
where
r : P Γ π οΌ Q Γ π
r = univalence-gives-propext (ua π€)
Γ-π-is-prop
Γ-π-is-prop
(Ξ» (p , z) β π-elim z)
(Ξ» (q , z) β π-elim z)
Ο : (x : β¨ p β©) β (p β x) β² q
Ο x = f x , s
where
s : ((P Γ π) , (Ξ» x x' β π) , _) οΌ ((Q Γ π) , (Ξ» y y' β π) , _)
s = to-Ξ£-οΌ (r ,
to-Ξ£-οΌ (dfunext fe' (Ξ» z β π-elim (prβ z)) ,
being-well-order-is-prop (underlying-order (q β f x)) fe _ _))
\end{code}
The existence of ordinal subtraction implies excluded middle.
\begin{code}
existence-of-subtraction : (π€ : Universe) β π€ βΊ Μ
existence-of-subtraction π€ = (Ξ± Ξ² : Ordinal π€)
β Ξ± βΌ Ξ²
β Ξ£ Ξ³ κ Ordinal π€ , Ξ± +β Ξ³ οΌ Ξ²
existence-of-subtraction-is-prop : is-prop (existence-of-subtraction π€)
existence-of-subtraction-is-prop = Ξ β-is-prop fe'
(Ξ» Ξ± Ξ² l β left-+β-is-embedding Ξ± Ξ²)
ordinal-subtraction-gives-excluded-middle : existence-of-subtraction π€ β EM π€
ordinal-subtraction-gives-excluded-middle {π€} Ο P P-is-prop = g
where
Ξ± = prop-ordinal P P-is-prop
Ξ² = prop-ordinal π π-is-prop
Ο = Ο Ξ± Ξ² (factβ-converse {π€} P π P-is-prop π-is-prop (Ξ» _ β β))
Ξ³ : Ordinal π€
Ξ³ = prβ Ο
r : Ξ± +β Ξ³ οΌ Ξ²
r = prβ Ο
s : P + β¨ Ξ³ β© οΌ π
s = ap β¨_β© r
t : P + β¨ Ξ³ β©
t = idtofun π (P + β¨ Ξ³ β©) (s β»ΒΉ) β
f : β¨ Ξ³ β© β Β¬ P
f c p = z
where
A : π€ Μ β π€ Μ
A X = Ξ£ x κ X , Ξ£ y κ X , x β y
u : A (P + β¨ Ξ³ β©)
u = inl p , inr c , +disjoint
v : Β¬ A π
v (x , y , d) = d (π-is-prop x y)
w : A (P + β¨ Ξ³ β©) β A π
w = transport A s
z : π
z = v (w u)
g : P + Β¬ P
g = Cases t inl (Ξ» c β inr (f c))
\end{code}
TODO. Another example where subtraction doesn't necessarily exist is
the situation (Ο +β πβ) βΌ βββ, discussed in the module
OrdinalOfOrdinals. The types Ο +β πβ and βββ are equal if and only if
LPO holds. Without assuming LPO, the image of the inclusion (Ο +β πβ)
β βββ, has empty complement, and so there is nothing that can be added
to (Ο +β πβ) to get βββ, unless LPO holds.
\begin{code}
open import UF.Retracts
open import UF.SubtypeClassifier
retract-Ξ©-of-Ordinal : retract (Ξ© π€) of (Ordinal π€)
retract-Ξ©-of-Ordinal {π€} = r , s , Ξ·
where
s : Ξ© π€ β Ordinal π€
s (P , i) = prop-ordinal P i
r : Ordinal π€ β Ξ© π€
r Ξ± = has-least Ξ± , having-least-is-prop fe' Ξ±
Ξ· : r β s βΌ id
Ξ· (P , i) = to-subtype-οΌ (Ξ» _ β being-prop-is-prop fe') t
where
f : P β has-least (prop-ordinal P i)
f p = p , (Ξ» x u β id)
g : has-least (prop-ordinal P i) β P
g (p , _) = p
t : has-least (prop-ordinal P i) οΌ P
t = pe π€ (having-least-is-prop fe' (prop-ordinal P i)) i g f
\end{code}
\begin{code}
left-preserves-least : (Ξ± Ξ² : Ordinal π€)
β (aβ : β¨ Ξ± β©) β is-least Ξ± aβ β is-least (Ξ± +β Ξ²) (inl aβ)
left-preserves-least Ξ± Ξ² aβ aβ-least (inl x) (inl u) l = aβ-least x u l
left-preserves-least Ξ± Ξ² aβ aβ-least (inr x) (inl u) l = β
\end{code}
Added 29 March 2022.
It is not the case in general that Ξ² βΌ Ξ± +β Ξ². We work with the
equivalent order _β΄_.
\begin{code}
module _ {π€ : Universe} where
open import Ordinals.OrdinalOfTruthValues fe π€ (pe π€)
open import UF.DiscreteAndSeparated
β΄-add-taboo : Ξ©β β΄ (πβ +β Ξ©β) β typal-WEM π€
β΄-add-taboo (f , s) = VI
where
I : is-least (πβ +β Ξ©β) (inl β)
I = left-preserves-least πβ Ξ©β β (Ξ» β β ())
II : f β₯ οΌ inl β
II = simulations-preserve-least Ξ©β (πβ +β Ξ©β) β₯ (inl β) f s β₯-is-least I
III : is-isolated (f β₯)
III = transportβ»ΒΉ is-isolated II (inl-is-isolated β (π-is-discrete β))
IV : is-isolated β₯
IV = lc-maps-reflect-isolatedness
f
(simulations-are-lc Ξ©β (πβ +β Ξ©β) f s)
β₯
III
V : β P β is-prop P β Β¬ P + ¬¬ P
V P i = Cases (IV (P , i))
(Ξ» (e : β₯ οΌ (P , i))
β inl (equal-π-is-empty (ap prβ (e β»ΒΉ))))
(Ξ» (Ξ½ : β₯ β (P , i))
β inr (contrapositive
(Ξ» (u : Β¬ P)
β to-subtype-οΌ (Ξ» _ β being-prop-is-prop fe')
(empty-types-are-οΌ-π fe' (pe π€) u)β»ΒΉ) Ξ½))
VI : β P β Β¬ P + ¬¬ P
VI = WEM-gives-typal-WEM fe' V
\end{code}
Added 5th April 2022.
Successor reflects order:
\begin{code}
succβ-reflects-β΄ : (Ξ± : Ordinal π€) (Ξ² : Ordinal π₯)
β (Ξ± +β πβ) β΄ (Ξ² +β πβ) β Ξ± β΄ Ξ²
succβ-reflects-β΄ Ξ± Ξ² (f , i , p) = g , j , q
where
k : (x : β¨ Ξ± β©) (t : β¨ Ξ² β© + π)
β f (inl x) οΌ t β Ξ£ y κ β¨ Ξ² β© , f (inl x) οΌ inl y
k x (inl y) e = y , e
k x (inr β) e = π-elim (III (f (inr β)) II)
where
I : f (inl x) βΊβ¨ Ξ² +β πβ β© (f (inr β))
I = p (inl x) (inr β) β
II : inr β βΊβ¨ Ξ² +β πβ β© (f (inr β))
II = transport (Ξ» - β - βΊβ¨ Ξ² +β πβ β© (f (inr β))) e I
III : (t : β¨ Ξ² β© + π) β Β¬ (inr β βΊβ¨ Ξ² +β πβ β© t)
III (inl y) l = π-elim l
III (inr β) l = π-elim l
h : (x : β¨ Ξ± β©) β Ξ£ y κ β¨ Ξ² β© , f (inl x) οΌ inl y
h x = k x (f (inl x)) refl
g : β¨ Ξ± β© β β¨ Ξ² β©
g x = prβ (h x)
Ο : (x : β¨ Ξ± β©) β f (inl x) οΌ inl (g x)
Ο x = prβ (h x)
j : is-initial-segment Ξ± Ξ² g
j x y l = II I
where
m : inl y βΊβ¨ Ξ² +β πβ β© f (inl x)
m = transportβ»ΒΉ (Ξ» - β inl y βΊβ¨ Ξ² +β πβ β© -) (Ο x) l
I : Ξ£ z κ β¨ Ξ± +β πβ β© , (z βΊβ¨ Ξ± +β πβ β© inl x) Γ (f z οΌ inl y)
I = i (inl x) (inl y) m
II : type-of I β Ξ£ x' κ β¨ Ξ± β© , (x' βΊβ¨ Ξ± β© x) Γ (g x' οΌ y)
II (inl x' , n , e) = x' , n , inl-lc (inl (g x') οΌβ¨ (Ο x')β»ΒΉ β©
f (inl x') οΌβ¨ e β©
inl y β)
q : is-order-preserving Ξ± Ξ² g
q x x' l = transportβ (Ξ» y y' β y βΊβ¨ Ξ² +β πβ β© y') (Ο x) (Ο x') I
where
I : f (inl x) βΊβ¨ Ξ² +β πβ β© f (inl x')
I = p (inl x) (inl x') l
succβ-reflects-βΌ : (Ξ± Ξ² : Ordinal π€) β (Ξ± +β πβ) βΌ (Ξ² +β πβ) β Ξ± βΌ Ξ²
succβ-reflects-βΌ Ξ± Ξ² l = β΄-gives-βΌ Ξ± Ξ²
(succβ-reflects-β΄ Ξ± Ξ²
(βΌ-gives-β΄ (Ξ± +β πβ) (Ξ² +β πβ) l))
succβ-preserves-βΎ : (Ξ± Ξ² : Ordinal π€) β Ξ± βΎ Ξ² β (Ξ± +β πβ) βΎ (Ξ² +β πβ)
succβ-preserves-βΎ Ξ± Ξ² = contrapositive (succβ-reflects-βΌ Ξ² Ξ±)
\end{code}
TODO. Actually (Ξ± +β πβ) β΄ (Ξ² +β πβ) is equivalent to
Ξ± ββ Ξ² or Ξ² ββ Ξ± +β πβ + Ξ³ for some (necessarily unique) Ξ³.
This condition in turn implies Ξ± β΄ Ξ² (and is equivalent to Ξ± β΄ Ξ² under
excluded middle).
However, the successor function does not preserve _β΄_ in general:
\begin{code}
succ-not-necessarily-monotone : ((Ξ± Ξ² : Ordinal π€)
β Ξ± β΄ Ξ²
β (Ξ± +β πβ) β΄ (Ξ² +β πβ))
β typal-WEM π€
succ-not-necessarily-monotone {π€} Ο = XII
where
module _ (P : π€ Μ) (isp : is-prop P) where
Ξ± : Ordinal π€
Ξ± = prop-ordinal P isp
I : (Ξ± +β πβ) β΄ πβ
I = Ο Ξ± πβ l
where
l : Ξ± β΄ πβ
l = unique-to-π ,
(Ξ» x y (l : y βΊβ¨ πβ β© β) β π-elim l) ,
(Ξ» x y l β l)
II : type-of I β Β¬ P + ¬¬ P
II (f , f-is-initial , f-is-order-preserving) = III (f (inr β)) refl
where
III : (y : β¨ πβ β©) β f (inr β) οΌ y β Β¬ P + ¬¬ P
III (inl β) e = inl VII
where
IV : (p : P) β f (inl p) βΊβ¨ πβ β© f (inr β)
IV p = f-is-order-preserving (inl p) (inr β) β
V : (p : P) β f (inl p) βΊβ¨ πβ β© inl β
V p = transport (Ξ» - β f (inl p) βΊβ¨ πβ β© -) e (IV p)
VI : (z : β¨ πβ β©) β Β¬ (z βΊβ¨ πβ β© inl β)
VI (inl β) l = π-elim l
VI (inr β) l = π-elim l
VII : Β¬ P
VII p = VI (f (inl p)) (V p)
III (inr β) e = inr IX
where
VIII : Ξ£ x' κ β¨ Ξ± +β πβ β© , (x' βΊβ¨ Ξ± +β πβ β© inr β) Γ (f x' οΌ inl β)
VIII = f-is-initial
(inr β)
(inl β)
(transportβ»ΒΉ (Ξ» - β inl β βΊβ¨ πβ β© -) e β)
IX : ¬¬ P
IX u = XI
where
X : β x' β Β¬ (x' βΊβ¨ Ξ± +β πβ β© inr β)
X (inl p) l = u p
X (inr β) l = π-elim l
XI : π
XI = X (prβ VIII) (prβ (prβ VIII))
XII : typal-WEM π€
XII = WEM-gives-typal-WEM fe' (Ξ» P isp β II P isp (I P isp))
\end{code}
TODO. Also the implication Ξ± β² Ξ² β (Ξ± +β πβ) β² (Ξ² +β πβ) fails in general.
\begin{code}
succ-monotone : EM (π€ βΊ) β (Ξ± Ξ² : Ordinal π€) β Ξ± β΄ Ξ² β (Ξ± +β πβ) β΄ (Ξ² +β πβ)
succ-monotone em Ξ± Ξ² l = II I
where
I : ((Ξ± +β πβ) β² (Ξ² +β πβ)) + ((Ξ± +β πβ) οΌ (Ξ² +β πβ)) + ((Ξ² +β πβ) β² (Ξ± +β πβ))
I = trichotomy _β²_ fe' em β²-is-well-order (Ξ± +β πβ) (Ξ² +β πβ)
II : type-of I β (Ξ± +β πβ) β΄ (Ξ² +β πβ)
II (inl m) = β²-gives-β΄ _ _ m
II (inr (inl e)) = transport ((Ξ± +β πβ) β΄_) e (β΄-refl (Ξ± +β πβ))
II (inr (inr m)) = transport ((Ξ± +β πβ) β΄_) VI (β΄-refl (Ξ± +β πβ))
where
III : (Ξ² +β πβ) β΄ (Ξ± +β πβ)
III = β²-gives-β΄ _ _ m
IV : Ξ² β΄ Ξ±
IV = succβ-reflects-β΄ Ξ² Ξ± III
V : Ξ± οΌ Ξ²
V = β΄-antisym _ _ l IV
VI : (Ξ± +β πβ) οΌ (Ξ² +β πβ)
VI = ap (_+β πβ) V
\end{code}
TODO. EM π€ is sufficient, because we can work with the resized order _β²β»_.
Added 4th May 2022.
\begin{code}
open import Ordinals.ToppedType fe
open import Ordinals.ToppedArithmetic fe
alternative-plusβ : (Οβ Οβ : Ordinalα΅ π€)
β [ Οβ +α΅ Οβ ] ββ ([ Οβ ] +β [ Οβ ])
alternative-plusβ Οβ Οβ = e
where
Ο
= cases (Ξ» β β Οβ) (Ξ» β β Οβ)
f : β¨ β πα΅ Ο
β© β β¨ [ Οβ ] +β [ Οβ ] β©
f (inl β , x) = inl x
f (inr β , y) = inr y
g : β¨ [ Οβ ] +β [ Οβ ] β© β β¨ β πα΅ Ο
β©
g (inl x) = (inl β , x)
g (inr y) = (inr β , y)
Ξ· : g β f βΌ id
Ξ· (inl β , x) = refl
Ξ· (inr β , y) = refl
Ξ΅ : f β g βΌ id
Ξ΅ (inl x) = refl
Ξ΅ (inr y) = refl
f-is-equiv : is-equiv f
f-is-equiv = qinvs-are-equivs f (g , Ξ· , Ξ΅)
f-is-op : is-order-preserving [ β πα΅ Ο
] ([ Οβ ] +β [ Οβ ]) f
f-is-op (inl β , _) (inl β , _) (inr (refl , l)) = l
f-is-op (inl β , _) (inr β , _) (inl β) = β
f-is-op (inr β , _) (inl β , _) (inl l) = l
f-is-op (inr β , _) (inr β , _) (inr (refl , l)) = l
g-is-op : is-order-preserving ([ Οβ ] +β [ Οβ ]) [ β πα΅ Ο
] g
g-is-op (inl _) (inl _) l = inr (refl , l)
g-is-op (inl _) (inr _) β = inl β
g-is-op (inr _) (inl _) ()
g-is-op (inr _) (inr _) l = inr (refl , l)
e : [ β πα΅ Ο
] ββ ([ Οβ ] +β [ Οβ ])
e = f , f-is-op , f-is-equiv , g-is-op
alternative-plus : (Οβ Οβ : Ordinalα΅ π€)
β [ Οβ +α΅ Οβ ] οΌ ([ Οβ ] +β [ Οβ ])
alternative-plus Οβ Οβ = eqtoidβ (ua _) fe' _ _ (alternative-plusβ Οβ Οβ)
\end{code}
Addition satisfies the expected recursive equations (which classically define
addition): zero is the neutral element (this is πβ-right-neutral above), addition
commutes with successors and addition preserves inhabited suprema.
Note that (the index of) the supremum indeed has to be inhabited, because
preserving the empty supremum would give the false equation
Ξ± +β π οΌ π
for any ordinal Ξ±.
\begin{code}
+β-commutes-with-successor : (Ξ± Ξ² : Ordinal π€) β Ξ± +β (Ξ² +β πβ) οΌ (Ξ± +β Ξ²) +β πβ
+β-commutes-with-successor Ξ± Ξ² = (+β-assoc Ξ± Ξ² πβ) β»ΒΉ
open import UF.PropTrunc
open import UF.Size
module _ (pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
open import Ordinals.OrdinalOfOrdinalsSuprema ua
open suprema pt sr
open PropositionalTruncation pt
+β-preserves-inhabited-suprema : (Ξ± : Ordinal π€) {I : π€ Μ } (Ξ² : I β Ordinal π€)
β β₯ I β₯
β Ξ± +β sup Ξ² οΌ sup (Ξ» i β Ξ± +β Ξ² i)
+β-preserves-inhabited-suprema Ξ± {I} Ξ² =
β₯β₯-rec (the-type-of-ordinals-is-a-set (ua _) fe')
(Ξ» iβ β β΄-antisym _ _ (βΌ-gives-β΄ _ _ (β¦
1β¦ iβ)) β¦
2β¦)
where
β¦
2β¦ : sup (Ξ» i β Ξ± +β Ξ² i) β΄ (Ξ± +β sup Ξ²)
β¦
2β¦ = sup-is-lower-bound-of-upper-bounds (Ξ» i β Ξ± +β Ξ² i) (Ξ± +β sup Ξ²) β¦
2β¦'
where
β¦
2β¦' : (i : I) β (Ξ± +β Ξ² i) β΄ (Ξ± +β sup Ξ²)
β¦
2β¦' i = βΌ-gives-β΄ (Ξ± +β Ξ² i) (Ξ± +β sup Ξ²)
(+β-right-monotone Ξ± (Ξ² i) (sup Ξ²)
(β΄-gives-βΌ _ _ (sup-is-upper-bound Ξ² i)))
β¦
1β¦ : I β (Ξ± +β sup Ξ²) βΌ sup (Ξ» i β Ξ± +β Ξ² i)
β¦
1β¦ iβ _ (inl a , refl) =
transport (_β² sup (Ξ» i β Ξ± +β Ξ² i))
(+β-β-left a)
(β²-β΄-gives-β² (Ξ± β a) (Ξ± +β Ξ² iβ) (sup (Ξ» i β Ξ± +β Ξ² i))
(inl a , +β-β-left a)
(sup-is-upper-bound (Ξ» i β Ξ± +β Ξ² i) iβ))
β¦
1β¦ iβ _ (inr s , refl) =
transport (_β² sup (Ξ» i β Ξ± +β Ξ² i))
(+β-β-right s)
(β₯β₯-rec (β²-is-prop-valued _ _) β¦
1β¦'
(initial-segment-of-sup-is-initial-segment-of-some-component
Ξ² s))
where
β¦
1β¦' : Ξ£ i κ I , Ξ£ b κ β¨ Ξ² i β© , sup Ξ² β s οΌ Ξ² i β b
β (Ξ± +β (sup Ξ² β s)) β² sup (Ξ» i β Ξ± +β Ξ² i)
β¦
1β¦' (i , b , p) =
transportβ»ΒΉ (Ξ» - β (Ξ± +β -) β² sup (Ξ» j β Ξ± +β Ξ² j)) p
(β²-β΄-gives-β² (Ξ± +β (Ξ² i β b)) (Ξ± +β Ξ² i) (sup (Ξ» j β Ξ± +β Ξ² j))
(inr b , +β-β-right b)
(sup-is-upper-bound (Ξ» j β Ξ± +β Ξ² j) i))
\end{code}
Constructively, these equations do not fully characterize ordinal addition, at
least not as far as we know. If addition preserved *all* suprema, then,
expressing the ordinal Ξ² as a supremum via the result given below, we would have
the recursive equation
Ξ± +β Ξ² οΌ Ξ± +β sup (Ξ» b β (B β b) +β πβ)
οΌ sup (Ξ» b β Ξ± +β ((B β b) +β πβ))
οΌ sup (Ξ» b β (Ξ± +β (B β b)) +β πβ)
which would ensure that there is at most one operation satisfying the above
equations for successors and suprema. The problem is that constructively we
cannot, in general, make a case distinction on whether Ξ² is zero or not.
In contrast, multiplication behaves differently and is uniquely characterized by
similar equations since it does preserve all suprema, see
MultiplicationProperties.
Added 24th May 2024 by Tom de Jong.
Every ordinal is the supremum of the successors of its initial segments.
\begin{code}
supremum-of-successors-of-initial-segments :
(Ξ± : Ordinal π€) β Ξ± οΌ sup (Ξ» x β (Ξ± β x) +β πβ)
supremum-of-successors-of-initial-segments {π€} Ξ± =
Antisymmetry (OO π€) Ξ± s (to-βΌ I) (β΄-gives-βΌ s Ξ± II)
where
s : Ordinal π€
s = sup (Ξ» x β (Ξ± β x) +β πβ)
F : β¨ Ξ± β© β Ordinal π€
F x = (Ξ± β x) +β πβ
I : (a : β¨ Ξ± β©) β (Ξ± β a) β² s
I a = f (inr β) , ((Ξ± β a) οΌβ¨ eβ β©
(F a β inr β) οΌβ¨ eβ β©
(s β f (inr β)) β)
where
f : (y : β¨ F a β©) β β¨ s β©
f = [ F a , s ]β¨ sup-is-upper-bound F a β©
eβ = (successor-lemma-right (Ξ± β a)) β»ΒΉ
eβ = (initial-segment-of-sup-at-component F a (inr β)) β»ΒΉ
II : s β΄ Ξ±
II = sup-is-lower-bound-of-upper-bounds F Ξ±
(upper-bound-of-successors-of-initial-segments Ξ±)
\end{code}
Added 2 June 2024 by Tom de Jong.
\begin{code}
no-greatest-ordinal : Β¬ (Ξ£ Ξ± κ Ordinal π€ , ((Ξ² : Ordinal π€) β Ξ² β΄ Ξ±))
no-greatest-ordinal {π€} (Ξ± , Ξ±-greatest) = irrefl (OO π€) Ξ± IV
where
I : (Ξ± +β πβ) β΄ Ξ±
I = Ξ±-greatest (Ξ± +β πβ)
II : Ξ± β΄ (Ξ± +β πβ)
II = β²-gives-β΄ Ξ± (Ξ± +β πβ) (successor-increasing Ξ±)
III : Ξ± +β πβ οΌ Ξ±
III = β΄-antisym (Ξ± +β πβ) Ξ± I II
IV : Ξ± β² Ξ±
IV = transport (Ξ± β²_) III (successor-increasing Ξ±)
\end{code}