We define types expressing what ordinal exponentiation should be for zero, successor and supremum exponents, and we record a few properties that follow immediately follow from those specifications. \begin{code} {-# OPTIONS --safe --without-K --exact-split #-} open import UF.PropTrunc open import UF.Size open import UF.Univalence module Ordinals.Exponentiation.Specification (ua : Univalence) (pt : propositional-truncations-exist) (sr : Set-Replacement pt) where open import MLTT.Spartan open import UF.FunExt open import UF.UA-FunExt open import UF.UniverseEmbedding private fe : FunExt fe = Univalence-gives-FunExt ua open import Ordinals.AdditionProperties ua open import Ordinals.Arithmetic fe open import Ordinals.Maps open import Ordinals.MultiplicationProperties ua open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.OrdinalOfOrdinalsSuprema ua open import Ordinals.Type open PropositionalTruncation pt open suprema pt sr \end{code} In what follows F should be thought of as implementing ordinal exponentiation with base ฮฑ, i.e. F ฮฒ produces the ordinal ฮฑ^ฮฒ. The three requirements below, together with ๐โ^ฮฒ ๏ผ ๐โ for ฮฒ โ ๐โ, classically *define* ordinal exponentiation. \begin{code} module _ {๐ค ๐ฅ : Universe} (ฮฑ : Ordinal ๐ค) (F : Ordinal ๐ฅ โ Ordinal (๐ค โ ๐ฅ)) where exp-specification-zero : (๐ค โ ๐ฅ) โบ ฬ exp-specification-zero = F (๐โ {๐ฅ}) ๏ผ ๐โ exp-specification-succ : (๐ค โ ๐ฅ) โบ ฬ exp-specification-succ = (ฮฒ : Ordinal ๐ฅ) โ F (ฮฒ +โ ๐โ) ๏ผ (F ฮฒ รโ ฮฑ) exp-specification-sup-generalized : (๐ค โ ๐ฅ) โบ ฬ exp-specification-sup-generalized = ฮฑ โ ๐โ โ {I : ๐ฅ ฬ } โ โฅ I โฅ โ (ฮฒ : I โ Ordinal ๐ฅ) โ F (sup ฮฒ) ๏ผ sup (ฮป (i : Lift ๐ค I) โ F (ฮฒ (lower i))) module _ (ฮฑ : Ordinal ๐ค) (F : Ordinal ๐ค โ Ordinal ๐ค) where exp-specification-sup : ๐ค โบ ฬ exp-specification-sup = ฮฑ โ ๐โ โ {I : ๐ค ฬ } โ โฅ I โฅ โ (ฮฒ : I โ Ordinal ๐ค) โ F (sup ฮฒ) ๏ผ sup (F โ ฮฒ) exp-specification-sup-from-generalized : exp-specification-sup-generalized ฮฑ F โ exp-specification-sup exp-specification-sup-from-generalized ฯ l {I} I-inh ฮฒ = ฯ l I-inh ฮฒ โ e where e : sup (F โ ฮฒ โ lower) ๏ผ sup (F โ ฮฒ) e = โด-antisym _ _ (sup-composition-โด lower (F โ ฮฒ)) (sup-composition-โด (lift ๐ค) (F โ ฮฒ โ lower)) \end{code} The following special cases follow directly from the specification. \begin{code} module _ (ฮฑ : Ordinal ๐ค) (exp-ฮฑ : Ordinal ๐ค โ Ordinal ๐ค) (exp-zero : exp-specification-zero ฮฑ exp-ฮฑ) (exp-succ : exp-specification-succ ฮฑ exp-ฮฑ) where ๐โ-neutral-exp : exp-ฮฑ ๐โ ๏ผ ฮฑ ๐โ-neutral-exp = exp-ฮฑ ๐โ ๏ผโจ ap (exp-ฮฑ) (๐โ-left-neutral ๐โ โปยน) โฉ exp-ฮฑ (๐โ {๐ค} +โ ๐โ) ๏ผโจ exp-succ ๐โ โฉ exp-ฮฑ (๐โ) รโ ฮฑ ๏ผโจ ap (_รโ ฮฑ) exp-zero โฉ ๐โ รโ ฮฑ ๏ผโจ ๐โ-left-neutral-รโ ฮฑ โฉ ฮฑ โ exp-๐โ-is-รโ : exp-ฮฑ ๐โ ๏ผ ฮฑ รโ ฮฑ exp-๐โ-is-รโ = exp-ฮฑ (๐โ +โ ๐โ) ๏ผโจ exp-succ ๐โ โฉ exp-ฮฑ ๐โ รโ ฮฑ ๏ผโจ ap (_รโ ฮฑ) ๐โ-neutral-exp โฉ ฮฑ รโ ฮฑ โ \end{code} The specification for suprema implies monotonicity. \begin{code} exp-is-monotone-in-exponent : (ฮฑ : Ordinal ๐ค) (exp-ฮฑ : Ordinal ๐ฅ โ Ordinal (๐ค โ ๐ฅ)) โ (ฮฑ โ ๐โ) โ exp-specification-sup-generalized ฮฑ exp-ฮฑ โ is-monotone (OO ๐ฅ) (OO (๐ค โ ๐ฅ)) exp-ฮฑ exp-is-monotone-in-exponent ฮฑ exp-ฮฑ ฮฝ exp-sup = is-monotone-if-continuous-generalized exp-ฮฑ (exp-sup ฮฝ) \end{code}