The main purpose of this file is to show that an ordinal α has a trichotomous least element if and only if it can be decomposed as 𝟙ₒ +ₒ α' for a necessarily unique ordinal α'. The relevance of this result for our work lies in the fact that our concrete construction of ordinal exponentiation only considers base ordinals with a trichotomous least element. \begin{code} {-# OPTIONS --safe --without-K --exact-split --lossy-unification #-} open import UF.Univalence module Ordinals.Exponentiation.TrichotomousLeastElement (ua : Univalence) where open import UF.Base open import UF.Equiv open import UF.FunExt open import UF.Sets open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.UA-FunExt private fe : FunExt fe = Univalence-gives-FunExt ua fe' : Fun-Ext fe' {𝓤} {𝓥} = fe 𝓤 𝓥 open import MLTT.Plus-Properties open import MLTT.Spartan open import Ordinals.Arithmetic fe open import Ordinals.AdditionProperties ua open import Ordinals.Equivalence open import Ordinals.Maps open import Ordinals.Notions open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.Propositions ua open import Ordinals.Type open import Ordinals.Underlying \end{code} Let α be an ordinal. Its order relation ≺ is locally trichotomous at an element x if x ≺ y or x = y or y ≺ x for all y : α. Abusing terminology, we will also say that x is trichotomous in α. \begin{code} is-locally-trichotomous-at : (α : Ordinal 𝓤) → ⟨ α ⟩ → 𝓤 ̇ is-locally-trichotomous-at α x = is-trichotomous-element (underlying-order α) x locally-trichotomous-at-is-prop : (α : Ordinal 𝓤) → (x : ⟨ α ⟩) → is-prop (is-locally-trichotomous-at α x) locally-trichotomous-at-is-prop α x = Π-is-prop fe' (in-trichotomy-is-prop (underlying-order α) fe (is-well-ordered α) x) \end{code} We say α is decomposed at x if there is an e: α = β + 𝟙 + γ for some ordinals β and γ such that e maps x to in(⋆). Since such β and γ are necessarily unique, if they exist, there is no difference between formulating this property using Σ or ∃. We use Σ, for convenience. \begin{code} is-decomposed-at : (α : Ordinal 𝓤) → ⟨ α ⟩ → 𝓤 ⁺ ̇ is-decomposed-at {𝓤} α x = Σ β ꞉ Ordinal 𝓤 , Σ γ ꞉ Ordinal 𝓤 , Σ e ꞉ α = β +ₒ (𝟙ₒ +ₒ γ) , Idtofunₒ e x = inr (inl ⋆) is-decomposed-at-is-prop : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-prop (is-decomposed-at α x) is-decomposed-at-is-prop {𝓤} α x (β , γ , e , p) (β' , γ' , e' , p') = to-subtype-= (λ β (γ , e , p) (γ' , e' , p') → to-subtype-= (λ γ → Σ-is-prop (the-type-of-ordinals-is-a-set (ua 𝓤) fe') (λ e → underlying-type-is-set fe (β +ₒ (𝟙ₒ +ₒ γ)))) (III β γ γ' (e ⁻¹ ∙ e'))) II where I : (δ ε : Ordinal 𝓥) → δ +ₒ (𝟙ₒ +ₒ ε) ↓ inr (inl ⋆) = δ I δ ε = δ +ₒ (𝟙ₒ +ₒ ε) ↓ inr (inl ⋆) =⟨ +ₒ-↓-right (inl ⋆) ⁻¹ ⟩ δ +ₒ (𝟙ₒ +ₒ ε ↓ inl ⋆) =⟨ ap (δ +ₒ_) (+ₒ-↓-left ⋆) ⁻¹ ⟩ δ +ₒ (𝟙ₒ ↓ ⋆) =⟨ ap (δ +ₒ_) (prop-ordinal-↓ 𝟙-is-prop ⋆) ⟩ δ +ₒ 𝟘ₒ =⟨ 𝟘ₒ-right-neutral δ ⟩ δ ∎ II = β =⟨ I β γ ⁻¹ ⟩ β +ₒ (𝟙ₒ +ₒ γ) ↓ inr (inl ⋆) =⟨ ap (β +ₒ (𝟙ₒ +ₒ γ) ↓_) p ⁻¹ ⟩ β +ₒ (𝟙ₒ +ₒ γ) ↓ Idtofunₒ e x =⟨ (Idtofunₒ-↓-lemma e) ⁻¹ ⟩ α ↓ x =⟨ Idtofunₒ-↓-lemma e' ⟩ β' +ₒ (𝟙ₒ +ₒ γ') ↓ Idtofunₒ e' x =⟨ ap (β' +ₒ (𝟙ₒ +ₒ γ') ↓_) p' ⟩ β' +ₒ (𝟙ₒ +ₒ γ') ↓ inr (inl ⋆) =⟨ I β' γ' ⟩ β' ∎ III : (β γ γ' : Ordinal 𝓤) → β +ₒ (𝟙ₒ +ₒ γ) = β +ₒ (𝟙ₒ +ₒ γ') → γ = γ' III β γ γ' r = +ₒ-left-cancellable (β +ₒ 𝟙ₒ) γ γ' r' where r' = (β +ₒ 𝟙ₒ) +ₒ γ =⟨ +ₒ-assoc β 𝟙ₒ γ ⟩ β +ₒ (𝟙ₒ +ₒ γ) =⟨ r ⟩ β +ₒ (𝟙ₒ +ₒ γ') =⟨ +ₒ-assoc β 𝟙ₒ γ' ⁻¹ ⟩ (β +ₒ 𝟙ₒ) +ₒ γ' ∎ \end{code} An element x is trichotomous in ordinal α iff α is decomposed at x. \begin{code} decomposed-at-to-trichotomy : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-decomposed-at α x → is-locally-trichotomous-at α x decomposed-at-to-trichotomy α x (β , γ , e , p) y = III (II (f y)) where f = Idtofunₒ e f-equiv = Idtofunₒ-is-order-equiv e I : is-locally-trichotomous-at (β +ₒ (𝟙ₒ +ₒ γ)) (inr (inl ⋆)) I (inl b) = inr (inr ⋆) I (inr (inl ⋆)) = inr (inl refl) I (inr (inr c)) = inl ⋆ II : is-locally-trichotomous-at (β +ₒ (𝟙ₒ +ₒ γ)) (f x) II = transport (is-locally-trichotomous-at (β +ₒ (𝟙ₒ +ₒ γ))) (p ⁻¹) I III : in-trichotomy (underlying-order (β +ₒ (𝟙ₒ +ₒ γ))) (f x) (f y) → in-trichotomy (underlying-order α) x y III = +functor (f-order-reflecting x y) (+functor f-lc (f-order-reflecting y x)) where f-order-reflecting : is-order-reflecting α (β +ₒ (𝟙ₒ +ₒ γ)) f f-order-reflecting = order-equivs-are-order-reflecting α (β +ₒ (𝟙ₒ +ₒ γ)) f f-equiv f-lc : left-cancellable f f-lc = equivs-are-lc f (order-equivs-are-equivs α (β +ₒ (𝟙ₒ +ₒ γ)) f-equiv) trichotomy-to-decomposed-at : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-locally-trichotomous-at α x → is-decomposed-at α x trichotomy-to-decomposed-at {𝓤} α x tri = β , γ , p , p-spec where _<_ = underlying-order α β : Ordinal 𝓤 β = ⟨β⟩ , _<'_ , <'-propvalued , <'-wellfounded , <'-extensional , <'-transitive where ⟨β⟩ : 𝓤 ̇ ⟨β⟩ = Σ y ꞉ ⟨ α ⟩ , y < x _<'_ : ⟨β⟩ → ⟨β⟩ → 𝓤 ̇ _<'_ = subtype-order α (_< x) <'-propvalued : is-prop-valued _<'_ <'-propvalued = subtype-order-is-prop-valued α (_< x) <'-wellfounded : is-well-founded _<'_ <'-wellfounded = subtype-order-is-well-founded α (_< x) <'-transitive : is-transitive _<'_ <'-transitive = subtype-order-is-transitive α (_< x) <'-extensional : is-extensional _<'_ <'-extensional (y , k) (y' , k') f g = to-subtype-= (λ a → Prop-valuedness α a x) (Extensionality α y y' u v) where u : (a : ⟨ α ⟩) → a < y → a < y' u a l = f (a , Transitivity α a y x l k) l v : (a : ⟨ α ⟩) → a < y' → a < y v a l = g (a , Transitivity α a y' x l k') l γ : Ordinal 𝓤 γ = ⟨γ⟩ , _<″_ , <″-propvalued , <″-wellfounded , <″-extensional , <″-transitive where ⟨γ⟩ : 𝓤 ̇ ⟨γ⟩ = Σ y ꞉ ⟨ α ⟩ , x < y _<″_ : ⟨γ⟩ → ⟨γ⟩ → 𝓤 ̇ _<″_ = subtype-order α (λ - → x < -) <″-propvalued : is-prop-valued _<″_ <″-propvalued = subtype-order-is-prop-valued α (λ - → x < -) <″-wellfounded : is-well-founded _<″_ <″-wellfounded = subtype-order-is-well-founded α (λ - → x < -) <″-transitive : is-transitive _<″_ <″-transitive = subtype-order-is-transitive α (λ - → x < -) <″-extensional : is-extensional _<″_ <″-extensional (y , k) (y' , k') f g = to-subtype-= (Prop-valuedness α x) (Extensionality α y y' u v) where u : (a : ⟨ α ⟩) → a < y → a < y' u a l = u' (tri a) where u' : (x < a) + (x = a) + (a < x) → a < y' u' (inl v) = f (a , v) l u' (inr (inl refl)) = k' u' (inr (inr v)) = Transitivity α a x y' v k' v : (a : ⟨ α ⟩) → a < y' → a < y v a l = v' (tri a) where v' : (x < a) + (x = a) + (a < x) → a < y v' (inl u) = g (a , u) l v' (inr (inl refl)) = k v' (inr (inr u)) = Transitivity α a x y u k f' : (a : ⟨ α ⟩) → (x < a) + (x = a) + (a < x) → ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ f' a (inl l) = inr (inr (a , l)) f' a (inr (inl e)) = inr (inl ⋆) f' a (inr (inr l)) = inl (a , l) f : ⟨ α ⟩ → ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ f a = f' a (tri a) g : ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ → ⟨ α ⟩ g (inl (a , _)) = a g (inr (inl ⋆)) = x g (inr (inr (a , _))) = a f-equiv : is-order-equiv α (β +ₒ (𝟙ₒ +ₒ γ)) f f-equiv = f-order-preserving , (qinvs-are-equivs f (g , η , ϵ)) , g-order-preserving where f-order-preserving : is-order-preserving α (β +ₒ (𝟙ₒ +ₒ γ)) f f-order-preserving a b = f-order-preserving' a b (tri a) (tri b) where f-order-preserving' : (a b : ⟨ α ⟩) → (tri-a : (x < a) + (x = a) + (a < x)) → (tri-b : (x < b) + (x = b) + (b < x)) → a < b → f' a tri-a ≺⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ f' b tri-b f-order-preserving' a b (inl l) (inl u) v = v f-order-preserving' a _ (inl l) (inr (inl refl)) v = 𝟘-elim (irrefl α a (Transitivity α a x a v l)) f-order-preserving' a b (inl l) (inr (inr u)) v = 𝟘-elim (irrefl α a (Transitivity α a x a (Transitivity α a b x v u) l)) f-order-preserving' _ b (inr (inl refl)) (inl u) v = ⋆ f-order-preserving' _ _ (inr (inl refl)) (inr (inl refl)) v = 𝟘-elim (irrefl α x v) f-order-preserving' a b (inr (inl refl)) (inr (inr u)) v = 𝟘-elim (irrefl α a (Transitivity α a b a v u)) f-order-preserving' a b (inr (inr l)) (inl u) v = ⋆ f-order-preserving' a _ (inr (inr l)) (inr (inl refl)) v = ⋆ f-order-preserving' a b (inr (inr l)) (inr (inr u)) v = v g-order-preserving : is-order-preserving (β +ₒ (𝟙ₒ +ₒ γ)) α g g-order-preserving (inl (a , _)) (inl (b , _)) v = v g-order-preserving (inl (a , l)) (inr (inl ⋆)) _ = l g-order-preserving (inl (a , l)) (inr (inr (b , u))) _ = Transitivity α a x b l u g-order-preserving (inr (inl _)) (inr (inr (b , u))) _ = u g-order-preserving (inr (inr (a , _))) (inr (inr (b , _))) v = v η : (a : ⟨ α ⟩) → g (f a) = a η a = η' a (tri a) where η' : (a : ⟨ α ⟩) → (tri-a : (x < a) + (x = a) + (a < x)) → g (f' a tri-a) = a η' a (inl u) = refl η' a (inr (inl refl)) = refl η' a (inr (inr u)) = refl ϵ : (w : ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩) → f (g w) = w ϵ w = ϵ' w (tri (g w)) where ϵ' : (w : ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩) → (tri-gw : (x < g w) + (x = g w) + (g w < x)) → f' (g w) tri-gw = w ϵ' (inl (a , u)) (inl v) = 𝟘-elim (irrefl α x (Transitivity α x a x v u)) ϵ' (inl (a , u)) (inr (inl refl)) = 𝟘-elim (irrefl α x u) ϵ' (inl (a , u)) (inr (inr v)) = ap inl (to-subtype-= (λ z → Prop-valuedness α z x) refl) ϵ' (inr (inl ⋆)) (inl v) = 𝟘-elim (irrefl α x v) ϵ' (inr (inl ⋆)) (inr (inl _)) = refl ϵ' (inr (inl ⋆)) (inr (inr v)) = 𝟘-elim (irrefl α x v) ϵ' (inr (inr (b , u))) (inl v) = ap (inr ∘ inr) (to-subtype-= (Prop-valuedness α x) refl) ϵ' (inr (inr (_ , u))) (inr (inl refl)) = 𝟘-elim (irrefl α x u) ϵ' (inr (inr (b , u))) (inr (inr v)) = 𝟘-elim (irrefl α x (Transitivity α x b x u v)) e : α ≃ₒ β +ₒ (𝟙ₒ +ₒ γ) e = f , f-equiv p : α = β +ₒ (𝟙ₒ +ₒ γ) p = eqtoidₒ (ua 𝓤) fe' α (β +ₒ (𝟙ₒ +ₒ γ)) e f-spec : f x = inr (inl ⋆) f-spec = f-spec' (tri x) where f-spec' : (tri-x : (x < x) + (x = x) + (x < x)) → f' x tri-x = inr (inl ⋆) f-spec' (inl l) = 𝟘-elim (irrefl α x l) f-spec' (inr (inl _)) = refl f-spec' (inr (inr l)) = 𝟘-elim (irrefl α x l) p-spec = Idtofunₒ p x =⟨ happly (Idtofunₒ-eqtoidₒ (ua 𝓤) fe' e) x ⟩ f x =⟨ f-spec ⟩ inr (inl ⋆) ∎ \end{code} Now we are interested in elements x of α which are both trichotomous and the least element of α. These two properties can be combined into a single property as follows: for each y : α, either x = y or x ≺ y. \begin{code} is-trichotomous-least : (α : Ordinal 𝓤) → ⟨ α ⟩ → 𝓤 ̇ is-trichotomous-least α x = (y : ⟨ α ⟩) → (x = y) + (x ≺⟨ α ⟩ y) being-trichotomous-least-is-prop : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-prop (is-trichotomous-least α x) being-trichotomous-least-is-prop α x = Π-is-prop (fe _ _) (λ y → +-is-prop I (Prop-valuedness α x y) (II y)) where I : is-set ⟨ α ⟩ I = underlying-type-is-set fe α II : (y : ⟨ α ⟩) → x = y → ¬ (x ≺⟨ α ⟩ y) II _ refl = irrefl α x \end{code} We prove that indeed being trichotomous least is equivalent to being trichotomous and least. \begin{code} is-trichotomous-least-implies-is-least : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-trichotomous-least α x → is-least α x is-trichotomous-least-implies-is-least α x tri-least y z l = I (tri-least z) where I : (x = z) + (x ≺⟨ α ⟩ z) → z ≺⟨ α ⟩ y I (inl refl) = 𝟘-elim (irrefl α x l) I (inr u) = 𝟘-elim (irrefl α x (Transitivity α x z x u l)) is-trichotomous-least-implies-is-locally-trichotomous : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-trichotomous-least α x → is-locally-trichotomous-at α x is-trichotomous-least-implies-is-locally-trichotomous α x tri-least y = I (tri-least y) where I : (x = y) + (x ≺⟨ α ⟩ y) → in-trichotomy (underlying-order α) x y I (inl e) = inr (inl e) I (inr u) = inl u is-trichotomous-and-least-implies-is-trichotomous-least : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-locally-trichotomous-at α x → is-least α x → is-trichotomous-least α x is-trichotomous-and-least-implies-is-trichotomous-least α x tri least y = I (tri y) where I : (x ≺⟨ α ⟩ y) + (x = y) + (y ≺⟨ α ⟩ x) → (x = y) + (x ≺⟨ α ⟩ y) I (inl u) = inr u I (inr (inl e)) = inl e I (inr (inr u)) = 𝟘-elim (irrefl α y (least y y u)) \end{code} We now show that α having a trichotomous least element is equivalent to α being decomposable as α = 𝟙 + α' for some necessarily unique ordinal α'. \begin{code} is-decomposable-into-one-plus : Ordinal 𝓤 → 𝓤 ⁺ ̇ is-decomposable-into-one-plus {𝓤} α = Σ α' ꞉ Ordinal 𝓤 , α = 𝟙ₒ +ₒ α' has-trichotomous-least-element : Ordinal 𝓤 → 𝓤 ̇ has-trichotomous-least-element α = Σ x ꞉ ⟨ α ⟩ , is-trichotomous-least α x being-decomposable-into-one-plus-is-prop : (α : Ordinal 𝓤) → is-prop (is-decomposable-into-one-plus α) being-decomposable-into-one-plus-is-prop {𝓤} α (α' , p) (α″ , q) = II where I : α' = α″ I = +ₒ-left-cancellable 𝟙ₒ α' α″ (p ⁻¹ ∙ q) II : (α' , p) = (α″ , q) II = to-subtype-= (λ γ → the-type-of-ordinals-is-a-set (ua 𝓤) fe') I having-trichotomous-least-element-is-prop : (α : Ordinal 𝓤) → is-prop (has-trichotomous-least-element α) having-trichotomous-least-element-is-prop α (x , p) (y , q) = II where I : ((x = y) + (x ≺⟨ α ⟩ y)) → ((y = x) + (y ≺⟨ α ⟩ x)) → x = y I (inl e) q' = e I (inr u) (inl e) = e ⁻¹ I (inr u) (inr v) = 𝟘-elim (irrefl α x (Transitivity α x y x u v)) II : (x , p) = (y , q) II = to-subtype-= (being-trichotomous-least-is-prop α) (I (p y) (q x)) decomposable-to-trichotomous-least : (α : Ordinal 𝓤) → is-decomposable-into-one-plus α → has-trichotomous-least-element α decomposable-to-trichotomous-least α (γ , refl) = (inl ⋆ , III) where I : is-least (𝟙ₒ +ₒ γ) (inl ⋆) I _ (inl ⋆) l = 𝟘-elim l I _ (inr c) l = 𝟘-elim l II : is-locally-trichotomous-at (𝟙ₒ +ₒ γ) (inl ⋆) II = decomposed-at-to-trichotomy α (inl ⋆) (𝟘ₒ , γ , p , p-spec) where p : 𝟙ₒ +ₒ γ = 𝟘ₒ +ₒ (𝟙ₒ +ₒ γ) p = (𝟘ₒ-left-neutral (𝟙ₒ +ₒ γ)) ⁻¹ p-spec : Idtofunₒ p (inl ⋆) = inr (inl ⋆) p-spec = ↓-lc (𝟘ₒ +ₒ (𝟙ₒ +ₒ γ)) (Idtofunₒ p (inl ⋆)) (inr (inl ⋆)) (e ⁻¹) where e = 𝟘ₒ +ₒ (𝟙ₒ +ₒ γ) ↓ inr (inl ⋆) =⟨ (+ₒ-↓-right (inl ⋆)) ⁻¹ ⟩ 𝟘ₒ +ₒ (𝟙ₒ +ₒ γ ↓ inl ⋆) =⟨ 𝟘ₒ-left-neutral _ ⟩ 𝟙ₒ +ₒ γ ↓ inl ⋆ =⟨ Idtofunₒ-↓-lemma p ⟩ 𝟘ₒ +ₒ (𝟙ₒ +ₒ γ) ↓ Idtofunₒ p (inl ⋆) ∎ III : is-trichotomous-least (𝟙ₒ +ₒ γ) (inl ⋆) III = is-trichotomous-and-least-implies-is-trichotomous-least α (inl ⋆) II I \end{code} In the converse direction, our strategy is to reuse our previous result that trichotomous elements x : α decomposes α as α = β + 𝟙 + γ; we show that if x is also least, then in fact β = 𝟘. \begin{code} is-least-and-decomposable-implies-nothing-below : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-least α x → ((β , γ , e , p) : is-decomposed-at α x) → β = 𝟘ₒ is-least-and-decomposable-implies-nothing-below α x least (β , γ , e , p) = ⊴-antisym β 𝟘ₒ (≼-gives-⊴ β 𝟘ₒ II) (≼-gives-⊴ 𝟘ₒ β (𝟘ₒ-least β)) where e-sim : is-simulation α (β +ₒ (𝟙ₒ +ₒ γ)) (Idtofunₒ e) e-sim = order-equivs-are-simulations α (β +ₒ (𝟙ₒ +ₒ γ)) (Idtofunₒ e) (Idtofunₒ-is-order-equiv e) e-equiv : is-equiv (Idtofunₒ e) e-equiv = order-equivs-are-equivs α (β +ₒ (𝟙ₒ +ₒ γ)) (Idtofunₒ-is-order-equiv e) e⁻¹ : ⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ → ⟨ α ⟩ e⁻¹ = inverse (Idtofunₒ e) e-equiv I : ¬ ⟨ β ⟩ I b = irrefl (β +ₒ (𝟙ₒ +ₒ γ)) (inl b) u''' where u : x ≼⟨ α ⟩ e⁻¹ (inl b) u = least (e⁻¹ (inl b)) u' : Idtofunₒ e x ≼⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ Idtofunₒ e (e⁻¹ (inl b)) u' = simulations-are-monotone _ _ (Idtofunₒ e) e-sim x (e⁻¹ (inl b)) u u'' : inr (inl ⋆) ≼⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ (inl b) u'' = transport₂ (λ - -' → - ≼⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ -') p (inverses-are-sections (Idtofunₒ e) e-equiv (inl b)) u' u''' : inl b ≺⟨ β +ₒ (𝟙ₒ +ₒ γ) ⟩ inl b u''' = ≺-≼-gives-≺ (β +ₒ (𝟙ₒ +ₒ γ)) (inl b) (inr (inl ⋆)) (inl b) ⋆ u'' II : β ≼ 𝟘ₒ II = to-≼ (λ b → 𝟘-elim (I b)) trichotomous-least-to-decomposable : (α : Ordinal 𝓤) → has-trichotomous-least-element α → is-decomposable-into-one-plus α trichotomous-least-to-decomposable α (x , tri-least) = (γ , III) where tri : is-locally-trichotomous-at α x tri = is-trichotomous-least-implies-is-locally-trichotomous α x tri-least least : is-least α x least = is-trichotomous-least-implies-is-least α x tri-least I : is-decomposed-at α x I = trichotomy-to-decomposed-at α x tri β = pr₁ I γ = pr₁ (pr₂ I) e = pr₁ (pr₂ (pr₂ I)) p = pr₂ (pr₂ (pr₂ I)) II : β = 𝟘ₒ II = is-least-and-decomposable-implies-nothing-below α x least I III = α =⟨ e ⟩ β +ₒ (𝟙ₒ +ₒ γ) =⟨ ap (_+ₒ (𝟙ₒ +ₒ γ)) II ⟩ 𝟘ₒ +ₒ (𝟙ₒ +ₒ γ) =⟨ 𝟘ₒ-left-neutral (𝟙ₒ +ₒ γ) ⟩ 𝟙ₒ +ₒ γ ∎ \end{code} The following provides an interface to the subordinal of positive elements in case we are given an ordinal with a trichotomous least element. \begin{code} _⁺[_] : (α : Ordinal 𝓤) → has-trichotomous-least-element α → Ordinal 𝓤 α ⁺[ d⊥ ] = pr₁ (trichotomous-least-to-decomposable α d⊥) _⁺[_]-part-of-decomposition : (α : Ordinal 𝓤) → (d⊥ : has-trichotomous-least-element α) → α = 𝟙ₒ +ₒ α ⁺[ d⊥ ] α ⁺[ d⊥ ]-part-of-decomposition = pr₂ (trichotomous-least-to-decomposable α d⊥) module _ (α : Ordinal 𝓤) (h@(⊥ , _) : has-trichotomous-least-element α) where ⁺-is-subtype-of-positive-elements : ⟨ α ⁺[ h ] ⟩ = (Σ a ꞉ ⟨ α ⟩ , ⊥ ≺⟨ α ⟩ a) ⁺-is-subtype-of-positive-elements = refl ⁺-underlying-element : ⟨ α ⁺[ h ] ⟩ → ⟨ α ⟩ ⁺-underlying-element = pr₁ to-⁺-= : {x y : ⟨ α ⁺[ h ] ⟩} → ⁺-underlying-element x = ⁺-underlying-element y → x = y to-⁺-= e = to-subtype-= (Prop-valuedness α ⊥) e \end{code} Finally, we record that any ordinal with a trichotomous least element is at least as big as 𝟙ₒ. \begin{code} trichotomous-least-element-gives-𝟙ₒ-⊴ : (α : Ordinal 𝓤) → has-trichotomous-least-element α → 𝟙ₒ ⊴ α trichotomous-least-element-gives-𝟙ₒ-⊴ α h = transport⁻¹ (𝟙ₒ ⊴_) (α ⁺[ h ]-part-of-decomposition) (+ₒ-left-⊴ 𝟙ₒ (α ⁺[ h ])) \end{code}