This file follows the definitions, equations, lemmas, propositions, theorems and
remarks of the paper "Ordinal Exponentiation in Homotopy Type Theory".
See also Ordinals.Exponentiation.index.html for an overview of the relevant files.
\begin{code}
{-# OPTIONS --safe --without-K --exact-split #-}
\end{code}
Our global assumptions are univalence, the existence of propositional
truncations and set replacement (equivalently, small set quotients).
Function extensionality can be derived from univalence.
\begin{code}
open import UF.Univalence
open import UF.PropTrunc
open import UF.Size
module Ordinals.Exponentiation.Paper
(ua : Univalence)
(pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
open import MLTT.Spartan
open import Notation.General
open import UF.FunExt
open import UF.UA-FunExt
private
fe : FunExt
fe = Univalence-gives-FunExt ua
fe' : Fun-Ext
fe' {𝓤} {𝓥} = fe 𝓤 𝓥
open import MLTT.List
open import UF.ClassicalLogic
open import UF.DiscreteAndSeparated
open import UF.ImageAndSurjection pt
open import UF.Subsingletons
open PropositionalTruncation pt
open import Ordinals.AdditionProperties ua
open import Ordinals.Arithmetic fe
open import Ordinals.Equivalence
open import Ordinals.Maps
open import Ordinals.MultiplicationProperties ua
open import Ordinals.Notions
open import Ordinals.OrdinalOfOrdinals ua
open import Ordinals.OrdinalOfOrdinalsSuprema ua
open suprema pt sr
open import Ordinals.Type
open import Ordinals.Underlying
open import Ordinals.Exponentiation.DecreasingList ua
open import Ordinals.Exponentiation.DecreasingListProperties-Concrete ua pt sr
open import Ordinals.Exponentiation.PropertiesViaTransport ua pt sr
open import Ordinals.Exponentiation.RelatingConstructions ua pt sr
open import Ordinals.Exponentiation.Specification ua pt sr
open import Ordinals.Exponentiation.Supremum ua pt sr
open import Ordinals.Exponentiation.Taboos ua pt sr
open import Ordinals.Exponentiation.TrichotomousLeastElement ua
\end{code}
To match the terminology of the paper, we put
\begin{code}
has-decidable-equality = is-discrete
is-ordinal-equiv = is-order-equiv
\end{code}
Section III. Ordinals in Homotopy Type Theory
\begin{code}
Lemma-1 : (α β : Ordinal 𝓤) (f : ⟨ α ⟩ → ⟨ β ⟩)
→ (is-simulation α β f → (a : ⟨ α ⟩) → α ↓ a = β ↓ f a)
× (is-simulation α β f → left-cancellable f × is-order-reflecting α β f)
× (is-simulation α β f × is-surjection f ↔ is-ordinal-equiv α β f)
Lemma-1 α β f = [1] , [2] , [3]
where
[1] : is-simulation α β f → (a : ⟨ α ⟩) → α ↓ a = β ↓ f a
[1] f-sim a = simulations-preserve-↓ α β (f , f-sim) a
[2] : is-simulation α β f → left-cancellable f × is-order-reflecting α β f
[2] f-sim = simulations-are-lc α β f f-sim
, simulations-are-order-reflecting α β f f-sim
[3] : is-simulation α β f × is-surjection f ↔ is-ordinal-equiv α β f
[3] = (λ (f-sim , f-surj) → surjective-simulations-are-order-equivs
pt fe α β f f-sim f-surj)
, (λ f-equiv → order-equivs-are-simulations α β f f-equiv
, equivs-are-surjections
(order-equivs-are-equivs α β f-equiv))
Eq-1 : (α β : Ordinal 𝓤)
→ ((a : ⟨ α ⟩) → (α +ₒ β) ↓ inl a = α ↓ a)
× ((b : ⟨ β ⟩) → (α +ₒ β) ↓ inr b = α +ₒ (β ↓ b))
Eq-1 α β = (λ a → (+ₒ-↓-left a) ⁻¹) , (λ b → (+ₒ-↓-right b) ⁻¹)
Eq-2 : (α β : Ordinal 𝓤) (a : ⟨ α ⟩) (b : ⟨ β ⟩)
→ (α ×ₒ β) ↓ (a , b) = α ×ₒ (β ↓ b) +ₒ (α ↓ a)
Eq-2 α β a b = ×ₒ-↓ α β
Eq-3 : (I : 𝓤 ̇ ) (F : I → Ordinal 𝓤) (y : ⟨ sup F ⟩)
→ ∃ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ ,
(y = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x)
× (sup F ↓ y = F i ↓ x)
Eq-3 I F y = ∥∥-functor h
(initial-segment-of-sup-is-initial-segment-of-some-component F y)
where
h : (Σ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ , sup F ↓ y = F i ↓ x)
→ Σ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ ,
(y = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x)
× (sup F ↓ y = F i ↓ x)
h (i , x , p) = i , x , q , p
where
[i,x] = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x
q : y = [i,x]
q = ↓-lc (sup F) y [i,x] (p ∙ (initial-segment-of-sup-at-component F i x) ⁻¹)
Lemma-2 : (α : Ordinal 𝓤)
→ ((β γ : Ordinal 𝓥) → β ⊴ γ → α ×ₒ β ⊴ α ×ₒ γ)
× ({I : 𝓤 ̇ } (F : I → Ordinal 𝓤) → α ×ₒ sup F = sup (λ i → α ×ₒ F i))
Lemma-2 α = ×ₒ-right-monotone-⊴ α , ×ₒ-preserves-suprema pt sr α
Eq-double-dagger : (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) → 𝓤 ⁺ ̇
Eq-double-dagger = exp-full-specification
Lemma-3 : (α : Ordinal 𝓤) (exp-α : Ordinal 𝓤 → Ordinal 𝓤)
→ exp-specification-zero α exp-α
→ exp-specification-succ α exp-α
→ exp-specification-sup α exp-α
→ (exp-α 𝟙ₒ = α)
× (exp-α 𝟚ₒ = α ×ₒ α)
× ((α ≠ 𝟘ₒ) → is-monotone (OO 𝓤) (OO 𝓤) exp-α)
Lemma-3 α exp-α exp-spec-zero exp-spec-succ exp-spec-sup =
𝟙ₒ-neutral-exp α exp-α exp-spec-zero exp-spec-succ
, exp-𝟚ₒ-is-×ₒ α exp-α exp-spec-zero exp-spec-succ
, (λ α-nonzero → is-monotone-if-continuous exp-α (exp-spec-sup α-nonzero))
Proposition-4
: (Σ exp ꞉ (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) , exp-full-specification exp)
↔ EM 𝓤
Proposition-4 =
(λ (exp , (exp-zero , exp-succ , exp-sup)) →
exponentiation-defined-everywhere-implies-EM
exp
exp-zero
exp-succ
(λ α → pr₁ (exp-sup α)))
, EM-gives-full-exponentiation
\end{code}
Section IV. Abstract Algebraic Exponentiation
\begin{code}
Lemma-5 : (β : Ordinal 𝓤) → β = sup (λ b → (β ↓ b) +ₒ 𝟙ₒ)
Lemma-5 = supremum-of-successors-of-initial-segments pt sr
Definition-6 : Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤
Definition-6 α β = α ^ₒ β
Proposition-7 : (α β : Ordinal 𝓤)
(a : ⟨ α ⟩) (b : ⟨ β ⟩) (e : ⟨ α ^ₒ (β ↓ b) ⟩)
→ α ^ₒ β ↓ ×ₒ-to-^ₒ α β {b} (e , a)
= α ^ₒ (β ↓ b) ×ₒ (α ↓ a) +ₒ (α ^ₒ (β ↓ b) ↓ e)
Proposition-7 α β a b e = ^ₒ-↓-×ₒ-to-^ₒ α β
Proposition-8 : (α β γ : Ordinal 𝓤)
→ (β ⊴ γ → α ^ₒ β ⊴ α ^ₒ γ)
× (𝟙ₒ ⊲ α → β ⊲ γ → α ^ₒ β ⊲ α ^ₒ γ)
Proposition-8 α β γ = ^ₒ-monotone-in-exponent α β γ
, ^ₒ-order-preserving-in-exponent α β γ
Theorem-9 : (α : Ordinal 𝓤) → 𝟙ₒ ⊴ α
→ exp-specification-zero α (α ^ₒ_)
× exp-specification-succ α (α ^ₒ_)
× exp-specification-sup α (α ^ₒ_)
Theorem-9 {𝓤} α α-pos = ^ₒ-satisfies-zero-specification {𝓤} {𝓤} α
, ^ₒ-satisfies-succ-specification {𝓤} {𝓤} α α-pos
, ^ₒ-satisfies-sup-specification α
Proposition-10 : (α : Ordinal 𝓤) (β γ : Ordinal 𝓥)
→ α ^ₒ (β +ₒ γ) = (α ^ₒ β) ×ₒ (α ^ₒ γ)
Proposition-10 = ^ₒ-by-+ₒ
Proposition-11 : (α : Ordinal 𝓤) (β γ : Ordinal 𝓥)
→ α ^ₒ (β ×ₒ γ) = (α ^ₒ β) ^ₒ γ
Proposition-11 = ^ₒ-by-×ₒ
\end{code}
Section V. Decreasing Lists: A Constructive Formulation
of Sierpiński's Definition
\begin{code}
Definition-12 : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → 𝓤 ⊔ 𝓥 ̇
Definition-12 α β = DecrList₂ α β
Remark-13 : (α : Ordinal 𝓤) (β : Ordinal 𝓥)
((l , p) (l' , q) : DecrList₂ α β)
→ l = l'
→ (l , p) = (l' , q)
Remark-13 α β _ _ = to-DecrList₂-= α β
Proposition-14-i
: EM 𝓤
→ ((α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-least α x
→ is-well-order (subtype-order α (λ - → x ≺⟨ α ⟩ -)))
Proposition-14-i = EM-implies-subtype-of-positive-elements-an-ordinal
Proposition-14-ii
: ((α : Ordinal (𝓤 ⁺⁺)) (x : ⟨ α ⟩) → is-least α x
→ is-well-order (subtype-order α (λ - → x ≺⟨ α ⟩ -)))
→ EM 𝓤
Proposition-14-ii = subtype-of-positive-elements-an-ordinal-implies-EM
Lemma-15-i : (α : Ordinal 𝓤)
→ has-trichotomous-least-element α ↔ is-decomposable-into-one-plus α
Lemma-15-i α = trichotomous-least-to-decomposable α
, decomposable-to-trichotomous-least α
Lemma-15-ii : (α : Ordinal 𝓤)
((a₀ , a₀-tri) : has-trichotomous-least-element α)
(β : Ordinal 𝓤)
→ α = 𝟙ₒ +ₒ β
→ (β = α ⁺[ a₀ , a₀-tri ])
× (⟨ α ⁺[ a₀ , a₀-tri ] ⟩ = (Σ a ꞉ ⟨ α ⟩ , a₀ ≺⟨ α ⟩ a))
Lemma-15-ii α (a₀ , a₀-tri) β p =
+ₒ-left-cancellable 𝟙ₒ β (α ⁺[ a₀ , a₀-tri ]) (p ⁻¹ ∙ q)
, ⁺-is-subtype-of-positive-elements α (a₀ , a₀-tri)
where
q : α = 𝟙ₒ +ₒ α ⁺[ a₀ , a₀-tri ]
q = α ⁺[ a₀ , a₀-tri ]-part-of-decomposition
Definition-16 : (α : Ordinal 𝓤) (β : Ordinal 𝓥)
→ has-trichotomous-least-element α
→ Ordinal (𝓤 ⊔ 𝓥)
Definition-16 α β h = exponentiationᴸ α h β
module fixed-assumptions-1
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
where
α⁺ = α ⁺[ h ]
NB[α⁺-eq] : α = 𝟙ₒ +ₒ α⁺
NB[α⁺-eq] = α ⁺[ h ]-part-of-decomposition
exp[α,_] : Ordinal 𝓦 → Ordinal (𝓤 ⊔ 𝓦)
exp[α, γ ] = exponentiationᴸ α h γ
Proposition-17 : (β : Ordinal 𝓥) → has-trichotomous-least-element exp[α, β ]
Proposition-17 β = exponentiationᴸ-has-trichotomous-least-element α h β
Lemma-18-i : (β : Ordinal 𝓥) (γ : Ordinal 𝓦)
(f : ⟨ β ⟩ → ⟨ γ ⟩)
→ is-order-preserving β γ f
→ ⟨ exp[α, β ] ⟩ → ⟨ exp[α, γ ] ⟩
Lemma-18-i β γ = expᴸ-map α⁺ β γ
Lemma-18-ii : (β : Ordinal 𝓥) (γ : Ordinal 𝓦)
→ β ⊴ γ → exp[α, β ] ⊴ exp[α, γ ]
Lemma-18-ii β γ (f , (f-init-seg , f-order-pres)) =
expᴸ-map α⁺ β γ f f-order-pres
, expᴸ-map-is-simulation α⁺ β γ f f-order-pres f-init-seg
module fixed-assumptions-2
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓥)
where
open fixed-assumptions-1 α h
Eq-5 : (b : ⟨ β ⟩) → exp[α, β ↓ b ] ⊴ exp[α, β ]
Eq-5 = expᴸ-segment-inclusion-⊴ α⁺ β
ι = expᴸ-segment-inclusion α⁺ β
ι-list = expᴸ-segment-inclusion-list α⁺ β
Eq-6 : (a : ⟨ α ⁺[ h ] ⟩) (b : ⟨ β ⟩)
→ (l : ⟨ exp[α, β ] ⟩)
→ is-decreasing-pr₂ α⁺ β ((a , b) ∷ pr₁ l)
→ ⟨ exponentiationᴸ α h (β ↓ b) ⟩
Eq-6 a b l δ = expᴸ-tail α⁺ β a b (pr₁ l) δ
τ = expᴸ-tail α⁺ β
Eq-6-addendum-i
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l₁ l₂ : List ⟨ α⁺ ×ₒ β ⟩)
(δ₁ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l₁))
(δ₂ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l₂))
→ l₁ ≺⟨List (α⁺ ×ₒ β) ⟩ l₂
→ τ a b l₁ δ₁ ≺⟨ exp[α, β ↓ b ] ⟩ τ a b l₂ δ₂
Eq-6-addendum-i a b l₁ l₂ δ₁ δ₂ = expᴸ-tail-is-order-preserving α⁺ β a b δ₁ δ₂
Eq-6-addendum-ii : (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l : List ⟨ α⁺ ×ₒ β ⟩)
{δ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l)}
{ε : is-decreasing-pr₂ α⁺ β l}
→ ι b (τ a b l δ) = (l , ε)
Eq-6-addendum-ii a b = expᴸ-tail-section-of-expᴸ-segment-inclusion α⁺ β a b
Eq-6-addendum-iii : (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l : List ⟨ α⁺ ×ₒ (β ↓ b) ⟩)
{δ : is-decreasing-pr₂ α⁺ (β ↓ b) l}
{ε : is-decreasing-pr₂ α⁺ β ((a , b) ∷ ι-list b l)}
→ τ a b (ι-list b l) ε = (l , δ)
Eq-6-addendum-iii a b l {δ} =
expᴸ-segment-inclusion-section-of-expᴸ-tail α⁺ β a b l δ
Proposition-19-i
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩) (l : List ⟨ α⁺ ×ₒ β ⟩)
(δ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l))
→ exp[α, β ] ↓ ((a , b ∷ l) , δ)
= exp[α, β ↓ b ] ×ₒ (𝟙ₒ +ₒ (α⁺ ↓ a)) +ₒ (exp[α, β ↓ b ] ↓ τ a b l δ)
Proposition-19-i = expᴸ-↓-cons α⁺ β
Proposition-19-ii
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩) (l : ⟨ exp[α, β ↓ b ] ⟩)
→ exp[α, β ] ↓ extended-expᴸ-segment-inclusion α⁺ β b l a
= exp[α, β ↓ b ] ×ₒ (𝟙ₒ +ₒ (α⁺ ↓ a)) +ₒ (exp[α, β ↓ b ] ↓ l)
Proposition-19-ii = expᴸ-↓-cons' α⁺ β
module fixed-assumptions-3
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓥)
where
open fixed-assumptions-1 α h
Theorem-20 : exp-specification-zero α (λ - → exp[α, - ])
× exp-specification-succ α (λ - → exp[α, - ])
× exp-specification-sup α (λ - → exp[α, - ])
Theorem-20 = expᴸ-satisfies-zero-specification {𝓤} {𝓤} α⁺
, transport⁻¹
(λ - → exp-specification-succ - (λ - → exp[α, - ]))
NB[α⁺-eq]
(expᴸ-satisfies-succ-specification {𝓤} α⁺)
, transport⁻¹
(λ - → exp-specification-sup - (λ - → exp[α, - ]))
NB[α⁺-eq]
(expᴸ-satisfies-sup-specification {𝓤} α⁺)
Proposition-21 : (β γ : Ordinal 𝓥)
→ exp[α, β +ₒ γ ] = exp[α, β ] ×ₒ exp[α, γ ]
Proposition-21 = expᴸ-by-+ₒ α⁺
Proposition-22 : (β : Ordinal 𝓥)
→ has-decidable-equality ⟨ α ⟩
→ has-decidable-equality ⟨ β ⟩
→ has-decidable-equality ⟨ exp[α, β ] ⟩
Proposition-22 β = exponentiationᴸ-preserves-discreteness α β h
private
tri-least : (α : Ordinal 𝓤)
→ has-least α
→ is-trichotomous α
→ has-trichotomous-least-element α
tri-least α (⊥ , ⊥-is-least) t =
⊥ ,
is-trichotomous-and-least-implies-is-trichotomous-least α ⊥ (t ⊥) ⊥-is-least
Proposition-23
: (α : Ordinal 𝓤) (β : Ordinal 𝓥) (h : has-least α)
→ (t : is-trichotomous α)
→ is-trichotomous β
→ is-trichotomous (exponentiationᴸ α (tri-least α h t) β)
Proposition-23 = exponentiationᴸ-preserves-trichotomy
\end{code}
Section VI. Abstract and Concrete Exponentiation
\begin{code}
Theorem-24 : (α β : Ordinal 𝓤) (h : has-trichotomous-least-element α)
→ α ^ₒ β = exponentiationᴸ α h β
Theorem-24 α β h = (exponentiation-constructions-agree α β h) ⁻¹
Corollary-25-i : (α β : Ordinal 𝓤)
→ has-trichotomous-least-element α
→ has-decidable-equality ⟨ α ⟩
→ has-decidable-equality ⟨ β ⟩
→ has-decidable-equality ⟨ α ^ₒ β ⟩
Corollary-25-i =
^ₒ-preserves-discreteness-for-base-with-trichotomous-least-element
Corollary-25-ii : (α β : Ordinal 𝓤)
→ has-least α
→ is-trichotomous α
→ is-trichotomous β
→ is-trichotomous (α ^ₒ β)
Corollary-25-ii = ^ₒ-preserves-trichotomy
module fixed-assumptions-4
(α β γ : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
where
private
h' : has-trichotomous-least-element (exponentiationᴸ α h β)
h' = exponentiationᴸ-has-trichotomous-least-element α h β
Corollary-26
: exponentiationᴸ α h (β ×ₒ γ) = exponentiationᴸ (exponentiationᴸ α h β) h' γ
Corollary-26 = exponentiationᴸ-by-×ₒ α h β γ
module fixed-assumptions-5
(α : Ordinal 𝓤)
where
open denotations α
Definition-27 : (β : Ordinal 𝓥) → DecrList₂ α β → ⟨ α ^ₒ β ⟩
Definition-27 β l = ⟦ l ⟧⟨ β ⟩
Proposition-29 : (β : Ordinal 𝓥) → is-surjection (λ l → ⟦ l ⟧⟨ β ⟩)
Proposition-29 = ⟦⟧-is-surjection
module fixed-assumptions-6
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓤)
where
open denotations
private
α⁺ = α ⁺[ h ]
NB : α = 𝟙ₒ +ₒ α⁺
NB = α ⁺[ h ]-part-of-decomposition
con-to-abs : ⟨ expᴸ[𝟙+ α⁺ ] β ⟩ → ⟨ (𝟙ₒ +ₒ α⁺) ^ₒ β ⟩
con-to-abs = induced-map α⁺ β
Lemma-31 : con-to-abs ∼ denotation' α⁺ β
Lemma-32 : denotation (𝟙ₒ +ₒ α⁺) β ∼ denotation' α⁺ β ∘ normalize α⁺ β
Theorem-30 : denotation (𝟙ₒ +ₒ α⁺) β ∼ con-to-abs ∘ (normalize α⁺ β)
Theorem-30 l = (Lemma-32 l) ∙ (Lemma-31 (normalize α⁺ β l) ⁻¹)
Lemma-31 = induced-map-is-denotation' α⁺ β
Lemma-32 = denotations-are-related-via-normalization α⁺ β
\end{code}
Section VII. Constructive Taboos
\begin{code}
Proposition-34
: (((α β γ : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊴ β → α ^ₒ γ ⊴ β ^ₒ γ)
↔ EM 𝓤)
× (((α β γ : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊲ β → α ^ₒ γ ⊴ β ^ₒ γ)
→ EM 𝓤)
× (((α β : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊲ β → α ×ₒ α ⊴ β ×ₒ β)
→ EM 𝓤)
Proposition-34 = ( ^ₒ-monotone-in-base-implies-EM
, (λ em α β γ _ _ → EM-implies-exp-monotone-in-base em α β γ))
, ^ₒ-weakly-monotone-in-base-implies-EM
, ×ₒ-weakly-monotone-in-both-arguments-implies-EM
Lemma-35 : (P : 𝓤 ̇ ) (i : is-prop P)
→ let Pₒ = prop-ordinal P i in
𝟚ₒ {𝓤} ^ₒ Pₒ = 𝟙ₒ +ₒ Pₒ
Lemma-35 = ^ₒ-𝟚ₒ-by-prop
Lemma-36
: ((α β : Ordinal 𝓤) (f : ⟨ α ⟩ → ⟨ β ⟩) → is-order-preserving α β f → α ⊴ β)
↔ EM 𝓤
Lemma-36 = order-preserving-gives-≼-implies-EM ∘ H₁
, H₂ ∘ EM-implies-order-preserving-gives-≼
where
H₁ = λ h α β (f , f-order-pres) → ⊴-gives-≼ α β (h α β f f-order-pres)
H₂ = λ h α β f f-order-pres → ≼-gives-⊴ α β (h α β (f , f-order-pres))
Proposition-37 : ((α β : Ordinal 𝓤) → 𝟙ₒ ⊲ α → β ⊴ α ^ₒ β) ↔ EM 𝓤
Proposition-37 = ^ₒ-as-large-as-exponent-implies-EM
, EM-implies-^ₒ-as-large-as-exponent
\end{code}